This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. The project uses a framework that includes tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning.
Assessing, Validating, and Developing Content Knowledge for Teaching Energy (Collaborative Research: Gitomer)
This project develops an instrument to measure the content knowledge that teachers need to teach about energy in high school classroom instruction that focuses on mechanical energy. There is significant research that indicates that teacher content knowledge differs from what people in other professions need to know about particular domains such as mathematics, and the development of a Content Knowledge of Teaching Energy in mechanics is an extension of those research and development efforts. The project embeds the development of the instrument in a program of measuring effective teaching of physics in the classroom and develops a strong validity argument for the resulting assessment based on its use as a measure in a professional development project that intends to improve teachers' understanding of energy in physics. The research team consists of experts in physics, assessment and classroom teaching of physics. The collaborative project includes researchers at Rutgers, University of Maine, Seattle Pacific University, Facets Innovation, and the Educational Testing Service.
The project uses a framework for effective teaching developed in the Measures of Effective Teaching project funded by the Gates Foundation to construct a theoretical framework for the teaching of mechanical energy. That framework includes items and tasks based on instructional practices in the classroom that can identify the extent to which the teacher understands both the disciplinary knowledge and the appropriate teaching processes that support student learning. A strong framework of validation based on multiple lines of evidence of the relationship between the items developed for the study and observations, analysis of video, and artifacts from the classroom is one element of the study. Another element of the study examines multiple psychometric lines of evidence to determine the reliability of the instruments and the validity of the inferences drawn from them. The resulting instruments will be used in the measurement of changes of teacher content knowledge for teaching in professional development programs as another source of validation.
The improvement of teachers' content knowledge for teaching is an important intermediary goal of professional development of teachers. Without adequate understanding of the gaps in teacher knowledge and precise evidence of the improvement through professional development, the efficacy of different professional development projects is not possible. This project develops a model of teacher assessment instrument development that addresses a cross-cutting theme in the Next Generation Science Standards and contributes an important tool to the research and evaluation processes that are needed to make those standards a reality in the classroom. Findings from the use of the instruments across multiple projects inform policy decisions on local, state and federal levels.