Rural

Measuring the Effectiveness of Middle School STEM Innovation and Engineering Design Curricula

Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills.

Award Number: 
2101441
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Inclusion of engineering in the Next Generation Science Standards has led to increased opportunities for K-12 students to learn engineering related concepts and skills, and learn about engineering career paths. However, a persistent challenge is the lack of high-quality, research-based engineering curricular resources that align with science and math education standards. Further, the opportunities for K-12 students to also learn about manufacturing and how manufacturing is related to engineering, math, and science are limited. Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills. This DRK-12 impact study project will investigate the effectiveness of STEM-Innovation and Design (STEM-ID) curricula in approximately 29 middle schools, targeting 29 engineering teachers and approximately 5,000 students across middle grades in Georgia. This impact research study will determine whether STEM-ID courses are equally effective across different demographic groups and school environments under normal implementation conditions and whether the courses have the potential to positively impact a vast number of students around the country, particularly students who have struggled to stay engaged with their STEM education. It is a critical part of a larger effort to move the STEM-ID curricula, developed with NSF support, from the research lab to large-scale practice in schools.

To facilitate large-scale implementation, the project will transfer all curriculum and teacher support materials to an online dissemination site, develop just-in-time teacher support materials to embed within the curriculum, create an online professional development platform, and conduct professional learning in multiple areas of the state. The project team will then assess the transferability of the STEM-ID curricula and identify teacher outcomes that affect the implementation. They will also examine the generalizability of the curriculum by measuring student outcomes in STEM academic achievement and on social-emotional scales. The project’s research questions consider 1) contextual factors that influence scaling; 2) the fidelity of implementation, curriculum adaptations and sustainability; 3) the effects of professional development on teachers’ engineering self-efficacy and instructional practices; 4) the effect of participation on student academic performance in mathematics and science; 5) the effect of participation on student social-emotional outcomes; and 5) the relationship between the way STEM-ID is implemented and the student outcomes.  To examine the effects of STEM-ID on achievement and achievement growth, the investigators will use a multilevel growth model and mediation analysis to explore if the intervention’s effect on achievement was mediated by students’ engagement, academic self-efficacy, and/or interest in STEM. Additionally, drawing upon Century and Cassata’s Fidelity of Implementation framework (FOI), they will examine the array of factors that influence implementation of the STEM-ID curricula across diverse school settings.

Building Insights through Observation: Researching Arts-based Methods for Teaching and Learning with Data

This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively.

Lead Organization(s): 
Award Number: 
2101310
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Innovations in data collection, infrastructure, and visualization play an important role in modern society. Large, complex datasets are accessible to and shared widely with the public. However, students need to learn how to interpret and reason about visualizations of scientific data. This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively. This project focuses on visual thinking skills that have been found to apply in both science and art: describing, wondering, recognizing uncertainty, and interpreting with evidence.

The project will conduct foundational research to understand the ways in which arts-based instructional methods and geospatial data visualization can be successfully applied by science teachers. The research will examine: (1) the ways in which arts-based instructional methods can be successfully applied by STEM teachers; (2) critical elements in the process of learning and applying these techniques to influence teachers’ content, pedagogical, and technological knowledge; and (3) for which transferable data literacy skills these approaches show most promise with children. This project will use a design-based research framework to develop data literacy teaching approaches in partnership with middle school teachers. The research process will include data about teachers’ development and students’ learning about data literacy. Data to be collected include qualitative and quantitative information from teachers and students.

Supporting the Implementation of Scientific Modeling Instruction in High School Chemistry and Biology in Rural Schools

High school students in many rural school districts have limited access to advanced STEM coursework and advanced technologies, including high-speed Internet. Rural school districts face difficulties in recruiting and retaining STEM teachers. In many cases, rural STEM teachers need additional training and support. The project will identify these, and other barriers rural teachers face and create professional development for teachers.

Award Number: 
2101590
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

High school students in many rural school districts have limited access to advanced STEM coursework and advanced technologies, including high-speed Internet. Rural school districts face difficulties in recruiting and retaining STEM teachers. In many cases, rural STEM teachers need additional training and support. The project will identify these, and other barriers rural teachers face and create professional development for teachers. The training will be designed to increase their discipline specific knowledge and related skills in engaging students in using models to explore, analyze, assess, and improve their thinking about and knowledge of science. Participating teachers will receive 114 hours of formal professional development in the summer and sustained support from follow-up sessions and an innovative virtual mentoring throughout the academic year. The project will revise biology and chemistry curriculum and support 30-90 teachers annually in rural areas in implementing reform-oriented MI instruction benefiting approximately 25,000 rural students. The project will result in a network of leader teachers who can sustain project initiatives. Online STEM professional development courses and digital tools for rural teachers and teachers will be made widely disseminated. In addition, project resources and research findings will be disseminated via conference presentations and peer-reviewed research journals.

Project research is designed to generate knowledge about the development of rural science teachers' pedagogical content knowledge (PCK) and the supports needed as rural teachers implement an approach to teaching called Modeling Instruction (MI). PCK refers to knowledge of and how to teach discipline-specific science concepts. MI is a pedagogical approach where students are actively engaged in using conceptual models that are created and applied to concrete physical, biological, and chemical phenomena to promote their understanding of scientific/mathematical principles. Through longitudinal mixed-methods research, the project will add new knowledge about PCK and MI. The project will investigate the progression of teachers’ PCK associated with the high-level implementation of MI that engages students in science research practices. The research of discipline specific PCK will significantly inform the curriculum and design of preservice and in-service science teacher education programs. The project will also research how various aspects of mentoring (e.g., feedback, interactions, discourse, and the modes and quantity of mentoring activities) support teachers in the effective use of PCK in the classroom. Qualitative research tools will include analysis of videos of teacher implementation of lessons, interviews with teachers focusing on the lessons, focus groups and semi-structured interviews on mentoring experiences, and analysis of teacher mentor-teacher mentee sessions and activity. The Science Instruction Practices Survey will collect quantitative data that will be used to understand each teacher’s implementation of MI, looking at the science practices that teachers in the classroom such as investigation, data collection and analysis, explanation, modeling, and science communication.

A Researcher-Practitioner Partnership to Assess the Impact of COVID-19 Recession on NGSS Implementation

This project will investigate how NGSS has been implemented in California schools during the ongoing COVID-19 pandemic. Through a state-wide survey, analysis of administrative data, interviews and case studies, this project will assess the impact of COVID-19 on NGSS implementation on a large scale, and more importantly, the extent to which high minority, high-poverty districts are disproportionately affected. It will also identify policy options available to state and school districts.

Award Number: 
2128789
Funding Period: 
Tue, 06/01/2021 to Tue, 05/31/2022
Full Description: 

Today 44 states serving 71 percent of U.S. students have education standards influenced by the Next Generation Science Standards (NGSS). Local implementation is the key to the success of NGSS, yet little is known about the extent to which NGSS have been implemented in K-12 schools during COVID-19. Policymakers, educational leaders, and researchers urgently need data to know whether and how NGSS implementation is taking hold in their schools in light of changes due to COVID-19 so that they may design better supports for implementation in anticipation for school reopening for in-person learning in September 2021. This project will investigate how NGSS has been implemented in California schools during the ongoing COVID-19 pandemic. Through a state-wide survey, analysis of administrative data, interviews and case studies, this project will assess the impact of COVID-19 on NGSS implementation on a large scale, and more importantly, the extent to which high minority, high-poverty districts are disproportionately affected. It will also identify policy options available to state and school districts. By collecting critical and timely data, this project will contribute new knowledge to understanding of the impact of COVID-19 on NGSS implementation. This knowledge is a necessary step towards policy and practice solutions that support schools and teachers in continuing implementation of NGSS and expanding educational opportunities to underrepresented minorities, English learners, and students with disabilities in post-COVID-19.

The goals of the project are to (1) assess the impacts of COVID-19 on NGSS implementation in California; (2) examine whether and how high-minority, high-poverty districts are impacted more acutely than other districts; and (3) identify policies and programs state and local districts could prioritize to mitigate the impacts. A mixed methods approach will be used to answer research questions related to the above goals. Specifically, a survey of all school districts in California will be conducted. Text mining of school district administrative data will also be performed. Qualitative methods will include interviews and case studies. Extensive outreach efforts, including one-on-one briefings with the members of the legislative and executive branches, will also take place throughout the year. A researcher-practitioner partnership will be formed through engaging the California State Department of Education in allocating resources for NGSS implementation and local school districts in developing guidelines to support teachers in NGSS-aligned instruction. Project findings will be widely disseminated through online resources and digital libraries to school districts, science teachers, and curriculum developers. Project findings will inform state policymaking and increase the partnerships between research institutions and state government.

Developing the Pedagogical Skills and Science Expertise of Teachers in Underserved Rural Settings

The project will develop and research an innovative model for rural science teacher professional development via technology-mediated lesson study (TMLS). This approach supports translating professional learning into classroom practice by developing a technology-based, social support system among rural teachers.

Lead Organization(s): 
Award Number: 
2101383
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Rural science teachers are often isolated and have few opportunities for meaningful collaboration with fellow teachers, an important source of professional learning. The project will develop and research an innovative model for rural science teacher professional development via technology-mediated lesson study (TMLS). This approach supports translating professional learning into classroom practice by developing a technology-based, social support system among rural teachers. The project will host summer workshops for high school biology and chemistry teachers from four rural Utah regions to learn about 3D science teaching. (3D science teaching incorporates core ideas science disciplines, science research practices, and concepts cutting across disciplines to help students meet performance expectations by engaging with authentic science phenomena.) In the workshops, participants will collaborate with the project team and teachers of the same subject from the same region of the state to co-design 3D science lessons that align with state and national education standards. Building on relationships developed during the workshops, the regional teacher teams will engage in a novel form of professional learning: technology-mediated lesson study. (Lesson study is an instructional inquiry model where teachers work face-to-face in small collaborative groups to craft, deliver, observe, and refine teaching practice.) This project will develop capacity for science teaching for 88 rural science teachers in four regions of the state, who will reach approximately 10,000 rural Utah students each year. Many of the students are members of the sovereign Ute, Paiute, Goshute, Navajo (Diné), and Shoshone Nations. The science lesson plans participants design will be made available to all Utah teachers, and shared with a national audience through a website that shares peer-reviewed science lesson plans. Project research and resources will be further disseminated through conference presentations and publications in peer-reviewed and practitioner journals.

The project will research how TMLS supports teachers in the process of translating professional learning into practice and investigate the impact of changing teachers’ social support network to include teachers of the same subject from other rural schools. The project will study the effects of co-design activities and TMLS cycles on teachers’ changing capacity, practice, and social support system using mixed-methods research. Changes in capacity and practice will be examined qualitatively through interviews, video observations of classroom teaching, and TMLS meetings. The effects of TMLS on teachers’ social support system will be analyzed quantitatively using social network analysis to identify individuals who act as information hubs for 3D science teaching. These teachers will be interviewed to better understand their social interactions. Using design-based implementation research, the project will iteratively improve the professional learning experience collaboratively with the science teacher leaders who participate in the project.

Education and Experience: Do Teacher Qualifications in Career-Focused STEM Courses Make a Difference?

Using high school statewide longitudinal data from Maryland from 2012-2022, this study will first document who has taught STEM-CTE courses over this period. After exploring the teaching landscape, the study will then explore whether qualifications (i.e., education, credentials, teaching experience) of teachers in STEM-CTE high school courses were associated with their students’ success.

Lead Organization(s): 
Award Number: 
2101163
Funding Period: 
Sun, 08/01/2021 to Mon, 07/31/2023
Full Description: 

When high school students take “STEM-CTE” (i.e., career and technical education courses in science, technology, engineering, and mathematics fields), they have much stronger outcomes across the school-to-college/career pipeline, including lower dropout rates and better attendance in high school, stronger math achievement in 12th grade, and higher odds of pursuing advanced STEM courses in high school and college. Growing teacher research shows that teachers matter for students’ success, particularly in STEM. In particular, research has established that teacher education and credentials in STEM fields, as well as years of classroom teaching experiences are key teacher factors in supporting student outcomes. However, there has been limited prior research regarding (a) who teaches STEM-CTE courses and (b) whether the benefits of these courses and pathways are driven or influenced by specific characteristics of STEM-CTE teachers. This project will aim to explore these questions.

Using high school statewide longitudinal data from Maryland from 2012-2022, this study will first document who has taught STEM-CTE courses over this period. The dataset includes approximately 5,000 unique teacher observations and approximately 500,000 unique student observations. After exploring the teaching landscape, the study will then explore whether qualifications (i.e., education, credentials, teaching experience) of teachers in STEM-CTE high school courses were associated with their students’ success. Indicators of success in the dataset include end-of-course grades, STEM-CTE concentration/industry-recognized credentialing, advanced STEM coursetaking (e.g., honors, AP, IB, dual-enrollment), STEM standardized test scores, math SAT/ACT scores, attendance/suspension rates, on-time graduation, and reduced dropout. Data analysis includes multivariate regression analyses, supplemented with tests for nonrandom sorting of teachers to students.

Supporting High School Students and Teachers with a Digital, Localizable, Climate Education Experience

This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions.

Lead Organization(s): 
Award Number: 
2100808
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Teachers regularly adapt curriculum materials to localize for their school or community context, yet curriculum materials are not always created to support this localization. Developing materials that are intentionally designed for localization has potential to support rich science learning across different contexts, especially for a topic like climate change where global change can have varied local effects. This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. It will develop and test a design process bringing together national designers and teachers across the country. Teachers will be supported through professional learning to adapt from the base unit to create a local learning experience for their students. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions. The unit will be fully digital with rich visual experiences, simulations, and computer models that incorporate real-time data and the addition of localized data sets. These data-based learning experiences will support students in reasoning with data to ask and answer questions about phenomena. Research will study the unit development and localization process, the supports appropriate for teachers and students, and the impact on classroom practice.

The project will adopt an iterative design process to create a Storyline base unit, aligned to Next Generation Science Standards, for localization, piloting, and an implementation study with 40 teachers. To support teacher learning, the project adopts the STeLLA teacher professional learning model. To support student learning, the project addresses climate change content knowledge with a focus on socioscientific issues and students’ sense of agency with environmental science. The project will research how the educative features in the unit and the professional development impact teachers’ practice, including their content knowledge, comfort for teaching a socioscientific issue, and their ability to productively localize materials from a base unit. The study uses a cohort-control quasi-experimental design to examine the impact of the unit and professional learning experience on dimensions of students' sense of agency with environmental science. The study will also include exploratory analyses to examine whether all students benefit from the unit. It uses a pre-post design to examine impacts on teacher knowledge and practice.

Empowering Teachers to See and Support Student Use of Crosscutting Concepts in the Life Sciences

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences.

Lead Organization(s): 
Award Number: 
2100822
Funding Period: 
Sun, 08/01/2021 to Wed, 07/31/2024
Full Description: 

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences. In response to the calls set forth by the Framework for K-12 Science Education and Next Generation Science Standards (NGSS), the field has most successfully researched and developed assessment tools for disciplinary core ideas and the science and engineering practices. The CCCs, which serve as the connective links across science domains, however, remain more abstractly addressed. Presently, science educators have little guidance for what student use of CCCs looks like or how to assess and nurture such use. This project, with its explicit attention to the CCCs, advances true three-dimensional scientific understanding in both research and the classroom. Leveraging formative assessment as a vehicle for student and teacher development taps into proven successful instructional strategies (e.g., sharing visions of successful learning, descriptive feedback, self-assessment), while also advancing formative assessment, itself, by strengthening and illustrating how these strategies may focus on the CCCs. Further, a strengths-based approach will center culturally related differences in students’ use of CCCs to achieve more equitable opportunities to engage in classroom sensemaking practices. This work impacts the field of science education by 1) enabling a more thorough realization of NGSS ideals, 2) strengthening teachers’ abilities to identify diverse demonstrations of CCCs, and 3) showcasing the impact of novel classroom tools to sharpen teachers’ abilities to solicit, notice, and act upon evidence of emergent student scientific thinking within their instructional practices.

This design-based implementation research project will engage teachers in the iterative development and refinement of rubrics that support three-dimensional science understanding through formative assessment. The high school biology classrooms that compose the study site are engaged in ambitious science teaching-inspired instruction. An inductive, bottom-up approach (Brookhart, 2013) will allow researchers, teachers, and students to co-construct rubrics. Analysis of classroom observations, artifact collection, interviews with teachers and students, and expert-panel ratings will produce a rubric for each CCC that integrates relevant science and engineering practices and is applicable across a range of disciplinary core ideas. These rubrics will illustrate progressions of increasingly advanced use of each of the CCCs, to guide the construction, pursuit, and assessment of learning goals. There will be two design cycles that allow for the collection of validity evidence and produce rubrics with the potential for broad application by educators. Complementary lines of qualitative and quantitative (i.e., psychometric) analysis will contribute to development and validation of the rubrics and their formative uses. Project inquiry will focus on 1) how the rubrics can represent CCCs for key disciplinary practices, 2) the extent to which teachers’ and students’ understandings of the rubrics align, and 3) how implementation of the rubrics impacts teachers’ and students’ understandings of the CCCs.

Supporting Instructional Decision Making: The Potential of Automatically Scored Three-Dimensional Assessment System (Collaborative Research: Zhai)

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

Lead Organization(s): 
Award Number: 
2101104
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 
This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems. Led by collaborators from University of Georgia, Michigan State University, University of Illinois at Chicago, and WestEd, the project team will develop computer scoring algorithms, a suite of AutoRs, and an array of pedagogical content knowledge supports (PCKSs). These products will assist middle school science teachers in the use of 3D assessments, making informative instructional changes, and improve students’ 3D learning. The project will generate knowledge about teachers’ uses of 3D assessments and examine the potential of automatically scored 3D assessments.
 
The project will achieve the research goals using a mixed-methods design in three phases. Phase I: Develop AutoRs. Machine scoring models for the 3D assessment tasks will be developed using existing data. To support teachers’ interpretation and use of automatic scores, the project team will develop AutoRs and examine how teachers make use of these initial reports. Based on observations and feedback from teachers, AutoRs will be refined using an iterative procedure so that teachers can use them with more efficiency and productivity. Phase II: Develop and test PCKSs. Findings from Phase I, the literature, and interviews with experienced teachers will be employed to develop PCKSs. The project will provide professional learning with teachers on how to use the AutoRs and PCKSs. The project will research how teachers use AutoRs and PCKSs to make instructional decisions. The findings will be used to refine the PCKSs. Phase III: Classroom implementation. In this phase a study will be conducted with a new group of teachers to explore the effectiveness and usability of AutoRs and PCKSs in terms of supporting teachers’ instructional decisions and students’ 3D learning. This project will create knowledge about and formulate a theory of how teachers interpret and attend to students’ performance on 3D assessments, providing critical information on how to support teachers’ responsive instructional decision making. The collaborative team will widely disseminate various products, such as 3D assessment scoring algorithms, AutoRs, PCKSs, and the corresponding professional development programs, and publications to facilitate 3D instruction and learning.

Exploratory Evidence on the Factors that Relate to Elementary School Science Learning Gains Among English Language Learners

This project will provide evidence on how school, classroom, teacher, and student factors shape elementary school science learning trajectories for English learners (ELs). The project will broaden ELs’ participation in STEM learning by investigating how individual, classroom, and school level situations such as instructional practices, learning environments, and characteristics of school personnel relate to EL elementary school science learning.

Lead Organization(s): 
Award Number: 
2100419
Funding Period: 
Sat, 05/15/2021 to Sun, 04/30/2023
Full Description: 

The nation’s schools are growing in linguistic and cultural diversity, with students identified as English learners (ELs) comprising more than ten percent of the student population. Unfortunately, existing research suggests that ELs lag behind other students in science achievement, even in the earliest grades of school. This project will provide evidence on how school, classroom, teacher, and student factors shape elementary school science learning trajectories for ELs. The project will broaden ELs’ participation in STEM learning by investigating how individual, classroom, and school level situations (inputs) such as instructional practices, learning environments, and characteristics of school personnel relate to EL elementary school science learning. Specifically, this study explores (1) a series of science inputs (time on science, content covered, availability of lab resources, and teacher training in science instruction), and (2) EL-specific inputs (classroom language use, EL instructional models, teacher certification and training, and the availability of EL support staff), in relation to ELs’ science learning outcomes from a national survey.

This study provides a comprehensive analysis of English learners’ (ELs) science learning in the early grades and the English learner instructional inputs and science instructional inputs that best predict early science outcomes (measured by both standardized science assessments and teacher-rated measures of science skills). The study uses the nationally representative Early Childhood Longitudinal Study (ECLS-K:2011) and employs a regression framework with latent class analysis to identify promising inputs that promote early science learning for ELs. Conceptually, rather than viewing the school-based inputs in isolation, the study explores how they combine to enhance students’ science learning trajectories. The study addresses the following research questions: How do science test performance trajectories vary across and within EL student groups in elementary school? How do access to school, teacher, and classroom level science and EL inputs vary across and within EL student groups in elementary school? Which school, teacher, and classroom level science and EL inputs are predictive of greater science test performance gains and teacher-rated science skills in elementary school? Are the relationships among these school, teacher, and classroom level inputs and student test performance and teacher-rated science skills different for subgroups of EL students, particularly by race/ethnicity or by immigration status? Are there particular combinations of school, teacher, and classroom level inputs that are predictive of science learning gains (test scores and teacher-rated skills) for ELs as compared to students more broadly?

Pages

Subscribe to Rural