Teachers

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Passmore)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Partner Organization(s): 
Award Number: 
1814263
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

Science Communities of Practice Partnership

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.

Award Number: 
1813012
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable. The working model involves reciprocal communities of practice, which are groups of teachers, leaders and administrators that focus on practical tasks and how to achieve them across these stakeholder perspectives. The project will provide evidence about the specific components of the professional development model that support sustainable improvement in science teaching, will test the ways that teacher ownership and organizational conditions mediate instructional change, and will develop four tools for facilitating the teacher learning and the accompanying capacity building. In this way, the project will produce practical knowledge and tools necessary for other school districts nationwide to create professional learning that is tailored to their contexts and therefore sustainable.

This study posits that communication among district teachers, teacher leaders, and administrators, and a sense of ownership for improved instruction among teachers can support sustainable change. As such, it tests a model that fosters communication and ownership through three reciprocal communities of practice--one about district leadership including one teacher per school, coaches and university faculty; another about lesson study including teachers, coaches and faculty; and a third about instructional innovation including teachers and administrators, facilitated by coaches. The research design seeks to inform what the communities of practice add to the effects in a quasi-experimental study involving 72 third to fifth grade teachers and 6500 students in four urban school districts. Mixed methodologies will be used to examine shifts in science teaching over three years, testing the professional development model and the mediating roles of reform ownership and organizational conditions.

Critical Issues in Mathematics Education 2018

This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years.

Award Number: 
1827412
Funding Period: 
Thu, 03/01/2018 to Thu, 02/28/2019
Full Description: 

This conference will continue the workshop series, Critical Issues in Mathematics Education (CIME) on teaching and learning mathematics, initiated by the Mathematical Sciences Research Institute (MSRI) in 2004. The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. Sessions will share relevant programmatic efforts and innovative research that have been shown to maintain or increase students' engagement and interests in mathematics across K-12, undergraduate and graduate education. The sessions will focus particularly on reproducible efforts that affirm those students' identities and their diverse intellectual resources and lived experience.

The CIME workshops impact three distinct communities: research mathematicians, mathematics educators (K-16), and education researchers. Participants learn about research and development efforts that can enhance their own work and the contributions they can make to solving issues in mathematics education. Participants also connect with others concerned about those issues. This workshop will also focus on developing action plans that participants can implement once they return to their institutions. There is also a focus on recruitment of leaders of mathematics departments, teachers, and other leaders in mathematics education across K-12, undergraduate education and graduate education in order to examine systemic changes that can be made to increase access, engagement, and interest in mathematics.

Developing a Culturally Responsive Computing Instrument for Underrepresented Students

This EAGER project aims to conduct a study designed to operationalize a culturally responsive computing framework, from theory to empirical application, by exploring what factors can be identified and later used to develop items for an instrument to assess youths' self-efficacy and self-perceptions in computing and technology-related fields and careers.

Project Email: 
Lead Organization(s): 
Award Number: 
1822346
Funding Period: 
Thu, 02/15/2018 to Fri, 01/31/2020
Project Evaluator: 
Full Description: 

This EAGER project aims to conduct a study designed to operationalize a culturally responsive computing framework, from theory to empirical application, by exploring what factors can be identified and later used to develop items for an instrument to assess youths' self-efficacy and self-perceptions in computing and technology-related fields and careers. The project explores the constructs of culturally responsive computing across youths of diverse gender and racial identities (i.e., White, African American, Latino, Native American, Alaskan Native boys and girls) using a culturally responsive, participatory action research approach.

The project explores and develops the factor structure of an instrument on culturally responsive computing with diverse middle and high schoolers of intersecting identities. It uses culturally responsive methodologies to co-create an instrument for later validation that will assess youths' self-efficacy and self-perceptions in technology. The project will explore Culturally Response Computing constructs across variables by conducting observations, focus groups and interviews, and collect context data and information from teachers and students that will contribute to a series of case examples. The work involves a two-phase mixed-methods research study focused on assembling evidence to assess, design and validate a Culturally Responsive Computing Framework from theory to empirical application. A total of 50 students and teachers from four geographically diverse rural and urban areas and racial ethnic backgrounds will participate in co-creating constructs.

Alternative video text
Alternative video text: 

Determining Teachers' Baseline Practice and Alignment Prior to a Systemic Curriculum Change

In this study, researchers will collaborate with Baltimore City Public Schools to collect and document teacher classroom practices prior to the implementation of an extended professional development model that targets pedagogical skills associated with the NGSS. The broad objective of the project is to characterize the benefits and limitations of utilizing controlled practice-teaching as a key component of teacher professional development for integrating NGSS aligned practices in middle school science classrooms.

Partner Organization(s): 
Award Number: 
1822029
Funding Period: 
Sun, 04/01/2018 to Sun, 03/31/2019
Full Description: 

The goal of this research is to document current teaching practices prior to the systemic integration of the Next Generation Science Standards (NGSS) in Baltimore City Public schools. In this study, UMBC will collaborate with Baltimore City Public Schools (City Schools) to collect and document teacher classroom practices prior to the implementation of an extended professional development model that targets pedagogical skills associated with the Next Generation Science Standards. The broad objective of the project is to characterize the benefits and limitations of utilizing controlled practice-teaching as a key component of teacher professional development for integrating NGSS aligned practices in middle school science classrooms. Success will be measured by changes in teacher attitudes, enhancement of teacher pedagogical skills and student learning gains. Sixty teachers, and over 4,500 students in Baltimore City will be directly impacted through the professional development and curriculum enactment efforts proposed. As a full partner in the project, the City Schools' leadership will also learn what works, for whom, and under what conditions in schools that are representative of their diverse district. Lessons learned have the potential to inform the implementation of other new reform initiatives within City Schools and beyond. Findings from the proposed research have the potential to advance our understanding of innovative professional development strategies and their impact on classroom practices and student learning.

This project focuses on a national need of models for high quality professional development that directly tie specific strategies to classroom-based instructional changes and student learning outcomes. One particular shift in classroom practice that is fundamental for the classroom implementation of NGSS is scientific discourse and argumentation. One particular strategy that has shown promise for supporting teachers' use of strategies supporting argumentation is the use of controlled practice teaching. The proposed study explicitly attempts to determine the impact of the controlled practice-teaching using a quasi-experimental design. The research plan involves middle science teachers being assigned to one of two experimental conditions (PD including or excluding a controlled practice-teaching component) and then to investigate potential differences among the two treatments and control conditions related to changes in attitudes toward NGSS, classroom practices and impact on student learning. The researcher hypothesizes that the inclusion of control-practice teaching that is imbedded in a sustained professional development program will promote the development of teacher pedagogical skills aligned with NGSS more effectively than sustained professional development that does not include a control-practice component.

The Spectrum Laboratory: Towards Authentic Inquiry for All

This project proposes to design, implement, and investigate the impact on students of an innovative curriculum supplement called the Spectrum Laboratory. The Spectrum Lab will be an online, interactive learning environment that enables students to make use of the database of publicly available spectra from research scientists, as well as from students.

Award Number: 
1814077
Funding Period: 
Tue, 05/01/2018 to Fri, 04/30/2021
Full Description: 

This project addresses physics, astronomy, and chemistry education at the high-school level. Spectroscopy is the single most important diagnostic tool in the sciences, and is required for inquiry at the frontiers of science across many disciplines, yet is unavailable to most classrooms. The Smithsonian Astrophysical Observatory proposes to design, implement, and investigate the impact on students of an innovative curriculum supplement called the Spectrum Laboratory. The Spectrum Lab will be an online, interactive learning environment that enables students to make use of the database of publicly available spectra from research scientists, as well as from students. The online learning resource and associated materials are purposefully being developed and tested with a demographically diverse set of schools. The project will determine how the design of a spectroscopy workspace can help students to use spectra while gaining fluency with a range of important science practices. The project's significance and importance is to greatly increase the opportunities for high school students to engage in authentic inquiry. Being able to evaluate and interpret real-world data is a hallmark of data literacy that is developed with Spectrum Lab. Project will potentially benefit the field through advances with respect to education and diversity, and benefit society by equipping high school students with the perceptual and cognitive factors that promote students' reasoning about spectra.

The Spectrum Lab's initial design applies research-based principles recommended for educational interfaces that engage students with graphical data advancing knowledge from prior research into understanding of how students make sense of spectroscopic data and its graphical representations. The project will be developed in collaboration with partner teachers in up to eight high school classrooms, representing a diverse population of learners, and then tested with a national group of 20 teachers with 600 to 800 students. A mix of quantitative and qualitative measures, including pre/post surveys and assessments, analysis of student project work, classroom video, and teacher surveys, will help address researcher's questions about students' experiences with the Spectrum Lab. The data to be gathered will be used to iteratively improve the design of the laboratory to aid students understand the source of these authentic data coming from spectroscopy to address real-world science questions of interest and importance to them. The Spectrum Lab will enable students to engage in a broad range of inquiry projects that were previously inaccessible, including projects near the frontiers of science. The students will become involved in their authentic inquiry projects, where each activity engages them in key science practices, including generating model spectrum plots to make predictions, assessing and interpreting data, and reasoning from evidence (and models) in support of a claim. The students will be using graphs of well-documented experiments and in physics, more challenging graphs of spectra of less familiar wavelength axis. The students in chemistry will learn how to relate the bright lines observed in an atom's spectrum to energy levels of the atom.  There will be studies that track students' eye movements show that students associate the peaks or valleys of a spectrum with individual atoms in a molecule, rather than with the overall properties of the molecule. The resources developed by the project will be freely available online for teachers and researchers. The Spectrum Lab is an advance in education technology that uses modern tools for enabling interactive data visualization. Its features enable students to integrate and apply the most important elements of science practice, such as the ability to draw evidence-based conclusions, as well as the ability to gather, evaluate and interpret data, intended to help students' science practice more closely resemble how research is done. The Spectrum Lab will modernize a critical part of high-school science classrooms, help teachers meet the expectations of the Next Generation Science Standards, and will better prepare students for college work.

Strengthening Data Literacy Across the Curriculum

This project will develop a set of statistics learning materials, with data visualization tools and an applied social science focus, to design applied data investigations addressing real-world socioeconomic questions with large-scale social science data. This project is designed to promote statistical understandings and interest in quantitative data analysis among high school students and engage students with content that resonates with their interests.

Award Number: 
1813956
Funding Period: 
Sun, 07/01/2018 to Wed, 06/30/2021
Full Description: 

The Strengthening Data Literacy across the Curriculum (SDLC) project seeks to significantly enhance the learning and teaching of Science, Technology, Engineering, and Mathematics (STEM) high school students and teachers through the development of resources, models, and tools. This project is designed to promote statistical understandings and interest in quantitative data analysis among high school students. The project will target students outside mathematics and statistics classes who seldom have opportunities formally make sense of large-scale quantitative data. The population for the initial study will be humanities/social studies and mathematics/statistics high school teachers and their classes. The focus on social justice themes are intended to engage students with content that resonates with their interests. This strategy has the potential to demonstrate ways to provide rich, meaningful statistical instruction to a population that seldom has the opportunity for such learning. By capturing students' imagination and interest with social justice themes, this project has the potential of high impact in today's society where understanding and preparing statistical reports are becoming more critical to the general populace.

This project will build on prior theory and research to develop a new set of statistics learning materials, with data visualization tools and an applied social science focus to design three 2-week applied data investigations (self-contained modules) addressing real-world socioeconomic questions with large-scale social science data. The modules will be aligned with the high school Common Core State Standards for Mathematics and key statistical content for college students. The purpose of the study is to strengthen existing theories of how to design classroom learning materials to support two primary sets of outcomes for high school students, particularly among those historically underrepresented in STEM fields: 1) stronger understandings of important statistics concepts and data analysis practices, and 2) interest in statistics and working with data.  The modules will engage students in a four-step investigative process where they will (1) formulate questions that can be answered with data; (2) design and implement a plan to assemble appropriate data; (3) use numerical and graphical methods to explore the data; and (4) summarize conclusions relating back to the original questions and citing relevant components of the analysis that support their interpretation and acknowledging other interpretations.

The project will employ a Design-Based Implementation Research (DBIR) design using both quantitative and qualitative data to determine results of targeted outcomes (noted above) as well track whether there is any evidence to support the conjectures that key module components directly impact targeted student outcomes. Starting with a well-defined, preliminary conceptual framework for the study, the project team will conduct four cycles of iterative design and testing of the proposed SDLC modules over two academic years, with each cycle occurring during a fall or spring semester.

Improving Multi-Dimensional Assessment and Instruction: Building and Sustaining Elementary Science Teachers' Capacity through Learning Communities (Collaborative Research: Lehman)

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813938
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its main goal is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science. The three dimensions will include disciplinary core ideas, science and engineering practices, and crosscutting concepts. These dimensions are described in the Framework for K-12 Science Education (National Research Council; NRC, 2012), and the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). The project will work closely with teachers to co-develop usable assessments and rubrics and help them to learn about three-dimensional assessment and instruction. Also, the project will work with teachers to test the developed assessments in diverse settings, and to create an active, online community of practice.

The two research questions will be: (1) How well do these assessments function with respect to aspects of validity for classroom use, particularly in terms of indicators of student proficiency, and tools to support teacher instructional practice?; and (2) In what ways do providing these assessment tasks and rubrics, and supporting teachers in their use, advance teachers' formative assessment practices to support multi-dimensional science instruction? The research and development components of this project will produce assessments and rubrics, which can directly impact students and teachers in the districts and states that have adopted the NGSS, as well as those that have embraced the vision of science teaching and learning embodied in the NRC Framework. The project will consist of five major tasks. First, the effort will iteratively develop assessments and rubrics for formative use, using an evidence-centered design approach. Second, it will collect data from evidence-based revision and redesign of the assessments from teachers piloting the assessments and rubrics, project cognitive laboratory studies with students, and an external review of the assessments design products. Third, it will study teachers' classroom use of assessments to understand and document how they blend assessment and instruction. The project will use pre/post questionnaires, video recordings, observation field notes, and pre/post interviews. Fourth, the study will build the capacity of participating teachers. Teacher Collaborators (n=9) will engage in participatory design of the assessment tasks and act as technical assistants to the overall implementation process. Teacher Implementers (n=15) will use the assessments formatively as part of their instructional practice. Finally, the work will develop a community of learners through the development of a technical assistance infrastructure, and leveraging teacher expertise to formatively assess students' work, using the assessments designed to be diagnostic and instructionally informative. External reviewers and an advisory board will provide formative feedback on the project's processes and summative evaluation of the project's results. The main outcomes of this endeavor will be prototypes of elementary science multi-dimensional assessments and new knowledge for the field on the underlying theory for developing teachers' capacity for engaging in multi-dimensional science instruction, learning, and assessment.

Improving Multi-Dimensional Assessment and Instruction: Building and Sustaining Elementary Science Teachers' Capacity through Learning Communities (Collaborative Research: Pellegrino)

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

Partner Organization(s): 
Award Number: 
1813737
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its main goal is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science. The three dimensions will include disciplinary core ideas, science and engineering practices, and crosscutting concepts. These dimensions are described in the Framework for K-12 Science Education (National Research Council; NRC, 2012), and the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). The project will work closely with teachers to co-develop usable assessments and rubrics and help them to learn about three-dimensional assessment and instruction. Also, the project will work with teachers to test the developed assessments in diverse settings, and to create an active, online community of practice.

The two research questions will be: (1) How well do these assessments function with respect to aspects of validity for classroom use, particularly in terms of indicators of student proficiency, and tools to support teacher instructional practice?; and (2) In what ways do providing these assessment tasks and rubrics, and supporting teachers in their use, advance teachers' formative assessment practices to support multi-dimensional science instruction? The research and development components of this project will produce assessments and rubrics, which can directly impact students and teachers in the districts and states that have adopted the NGSS, as well as those that have embraced the vision of science teaching and learning embodied in the NRC Framework. The project will consist of five major tasks. First, the effort will iteratively develop assessments and rubrics for formative use, using an evidence-centered design approach. Second, it will collect data from evidence-based revision and redesign of the assessments from teachers piloting the assessments and rubrics, project cognitive laboratory studies with students, and an external review of the assessments design products. Third, it will study teachers' classroom use of assessments to understand and document how they blend assessment and instruction. The project will use pre/post questionnaires, video recordings, observation field notes, and pre/post interviews. Fourth, the study will build the capacity of participating teachers. Teacher Collaborators (n=9) will engage in participatory design of the assessment tasks and act as technical assistants to the overall implementation process. Teacher Implementers (n=15) will use the assessments formatively as part of their instructional practice. Finally, the work will develop a community of learners through the development of a technical assistance infrastructure, and leveraging teacher expertise to formatively assess students' work, using the assessments designed to be diagnostic and instructionally informative. External reviewers and an advisory board will provide formative feedback on the project's processes and summative evaluation of the project's results. The main outcomes of this endeavor will be prototypes of elementary science multi-dimensional assessments and new knowledge for the field on the underlying theory for developing teachers' capacity for engaging in multi-dimensional science instruction, learning, and assessment.

Professional Development for K-12 Science Teachers in Linguistically Diverse Classrooms

This project will engage science teachers in a sustained professional development (PD) program embedded in an afterschool science program designed for a linguistically diverse group of English learners (ELs).

Lead Organization(s): 
Award Number: 
1813937
Funding Period: 
Tue, 05/01/2018 to Sat, 04/30/2022
Full Description: 

This project will engage science teachers in a sustained professional development (PD) program embedded in an afterschool science program designed for a linguistically diverse group of English learners (ELs). The project targets science teachers (chemistry, physics, biology, and earth science) who teach in a high school that includes refugees from Myanmar, Central America, and Africa. Roughly 20% of the students are classified as ELs, representing almost 20 different linguistic groups, including a variety of Asian, Spanish, and Arabic languages. The fundamental issue that the project seeks to address is the design of science learning environments to facilitate ELs' learning in linguistically diverse high school classrooms. Research on science education for ELs has recommended several effective teaching approaches, such as building on students' diverse and rich resources, engaging students in authentic science learning practices, and encouraging and valuing flexible use of multiple languages. However, previously most research has focused on teaching speakers of Spanish in elementary and middle school level science classrooms in which a majority of ELs speak the same language. Furthermore, while many PD programs supporting science education for ELs provide a short-term workshop and/or newly designed curriculum and curriculum guide, there is a lack of PD models that engage teachers in a sustained community of practice through collaboration between researchers and teachers.

The project's primary goal includes broadening participation with direct impact on 14 science teachers, who will impact over 2000 students, including over 450 ELs, during the project implementation period. The project provides a sustained model of the PD program which further impacts EL students of teachers who participated in the various phases of the project. The project has a potential to make an impact on ELs and high school science teachers of ELs in three different ways. First, by generating PD materials that include effective teaching materials and instructional practices for ELs, which can be used by other educators situated in similar educational contexts. Second, by giving presentations and publish papers that communicate findings of the project to academic communities. These outputs can impact other researchers who would like to design PD programs to foster ELs' science learning. Third, by implementing the developed and tested PD program in a larger scale. The implementation of the project will build capacity to conduct a larger PD project to impact more teachers and students. These anticipated outputs and outcomes will provide valuable resources for researcher and practitioners looking to support ELs' science learning and steps forward to equity. Finally, the project team and two cohorts of science teachers will co-design a school-wide science teacher PD to transform science teaching materials and practices of non-participating teachers.

Pages

Subscribe to Teachers