Post-secondary Faculty

Formal and informal mentoring in the first year of teaching.

Presenter(s): 
Hochberg, E. D., Hawkinson, L. E., Cannata, M., Desimone, L. D., & Porter, A. C.
Year: 
2009
Month: 
April
Presentation Type: 

Assessing Secondary Teachers' Algebraic Habits of Mind (Collaborative Research: Stevens)

This collaborative project is developing instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement.

Partner Organization(s): 
Award Number: 
1222496
Funding Period: 
Wed, 08/15/2012 to Sun, 07/31/2016
Full Description: 

Boston University, Education Development Center, Inc., and St. Olaf College are collaborating on Assessing Secondary Teachers' Algebraic Habits of Mind (ASTAHM) to develop instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. MHoM is a critical component of mathematical knowledge for teaching at the secondary level. Recognizing the need for a scientific approach to investigate the ways in which MHoM is an indicator of teacher effectiveness, the partnership is researching the following questions:

1. How do teachers who engage MHoM when doing mathematics for themselves also bring MHoM to their teaching practice?

2. How are teachers' engagement with MHoM and their use of these habits in teaching related to student understanding and achievement?

To investigate these questions, ASTAHM is developing two instruments: a paper and pencil (P&P) assessment and an observation protocol that measure teachers' knowledge and classroom use, respectively, of MHoM.

The work is being conducted in two phases: (1) an instrument-refinement and learning phase, and (2) an instrument-testing and research phase. Objectives of Phase 1 are to gather data to refine the project's existing instruments and to learn about the bridge factors that impact the relationship between teachers' knowledge and classroom use of MHoM. Specific research activities include: administering the pilot P&P assessment to 40 teachers, videotaping Algebra instructions of 8 teachers, performing initial testing and refinement of the instruments, and using the data to analyze the bridge factors. Phase 2 is a large-scale study involving field-testing the P&P assessment with 200 teachers, videotaping 20 teachers and studying them using the observation protocol, collecting achievement data from 3000 students, and checking P&P content validity with 200 mathematicians. With these validated instruments in hand, the project will then conduct an investigation into the above research questions. Lesley University's Program Evaluation and Research Group (PERG) is the external evaluator. PERG is assessing ASTAHM's overall success in developing valid and reliable instruments to investigate the extent to which a relationship exists between teachers' MHoM and their classroom practice, as well as student achievement. Evaluators are also investigating whether users' coding guides for both instruments enable field-testers to effectively use and adequately score them.

This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement. The MHoM construct is closely aligned with the Common Core State Standards-Mathematics (CCSS-M); especially its Standards for Mathematical Practice. For example, both place importance on seeking and using mathematical structure. Thus the instruments this project produces can act as pre- and post-measures of the effectiveness of professional development programs in preparing teachers to implement the CCSS-M. Mathematics teacher knowledge at the secondary level is an understudied field. Through analyses of the practices and habits of mind that teachers bring to their work, ASTAHM is developing instruments that can be used to shed light on effective secondary teaching.


Project Videos

2019 STEM for All Video Showcase

Title: Studying Teachers' Mathematical Habits of Mind

Presenter(s): Sarah Sword, Eden Badertscher, Al Cuoco, Miriam Gates, Ryota Matsuura, & Glenn Stevens

2017 STEM for All Video Showcase
Title: Assessing Secondary Teachers' Algebraic Habits of Mind

Presenter(s): Sarah Sword, Courtney Arthur, Al Cuoco, Miriam Gates, Ryota Matsuura, & Glenn Stevens

2016 STEM for All Video Showcase

Title: Assessing Secondary Teachers' Algebraic Habits of Mind

Presenter(s): Ryota Matsuura, Al Cuoco, Glenn Stevens, & Sarah Sword


InterLACE: Interactive Learning and Collaboration Environment

This project designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments.

Lead Organization(s): 
Award Number: 
1119321
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2013
Full Description: 

This project, under the Tufts University Center for Engineering Education and Outreach (CEEO) designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on prior NSF-funded work on RoboBooks, an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments. The InterLACE team hypothesizes that technology seamlessly integrating physics content and process skills within a classroom learning activity will provide a wide variety of student benefits, ranging from improved learning outcomes and increased content knowledge to gains in attitudinal and social displays as well.

The hypothesis for this work is based on research that indicates teachers believe proper implementation of design-based, inquiry projects are time consuming and can be difficult to manage and facilitate in classrooms without great scaffolding or other supports. Using design-based research with a small number of teachers and students, the PIs iteratively develop the system and supporting materials and generate a web-based implementation that supports students through the various stages of design inquiry. A quasi-experimental trial in the final years of the project is used to determine the usability of the technology and efficacy of the system in enhancing teaching and learning. Through the tools and activities developed, the researchers anticipate showing increases in effective inquiry learning and enhanced accessibility to meet the needs of diverse learners and teachers, leading to changes in classroom practice.

Through this project the PIs (1) gain insights that will enable them to refine the InterLACE platform so it can be implemented and brought to scale in the near terms as a support for design-based inquiry science projects, and (2) advance theory, design and practice to support the design of technology-based learning environments, and (3) understand how connecting students? hypotheses, ideas, and data impacts their learning of physics content and scientific inquiry skills.

Pages

Subscribe to Post-secondary Faculty