Elementary School

Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.

Lead Organization(s): 
Award Number: 
1908889
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

U.S. proficiency in mathematics continues to be low and early math performance is a powerful predictor of long-term academic success and employability. However, relatively few early childhood degree programs have any curriculum requirements focused on key mathematics topics. Thus, teacher professional development programs offer a viable and promising method for supporting and improving teachers' instructional approaches to mathematics and thus, improving student math outcomes. The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction. The LT2 program modules uniquely include the mathematical learning goal, the developmental progression, and relevant instructional activities. All three aspects are critical for high-quality and coherent mathematics instruction in the early grades.

This project will address the following research questions: 1) What are the medium-range effects of LT2 on student achievement and the achievement gap? 2) What are the short- and long-term effects of LT2 on teacher instructional approach, beliefs, and quality? and 3) How cost effective is the LT2 intervention relative to the original Building Blocks intervention? To address the research questions, this project will conduct a multisite cluster randomized experimental design, with 90 schools randomly assigned within school districts to either experimental or control groups. Outcome measures for the approximately 250 kindergarten classrooms across these districts will include the Research-based Elementary Math Assessment, observations of instructional quality, a questionnaire focused on teacher beliefs and practices, in addition to school level administrative data. Data will be analyzed using multi-level regression models to determine the effect of the Learning Trajectories intervention on student learning.

Streams of Data: Nurturing Data Literacy in Young Science Learners (Collaborative Research: Robeck)

This project will develop an approach to support fourth grade students' data literacy with complex, large-scale, professionally collected data sets. The work will focus on analytical thinking as a subset of data literacy, specifically evaluating and interpreting data. The project will teach students about working with geoscience data, which connect to observable, familiar aspects of the natural world and align with Earth science curriculum standards.

Award Number: 
1906286
Funding Period: 
Mon, 07/01/2019 to Thu, 06/30/2022
Full Description: 

These skills are essential for working with scientific data sets, but educators know very little about how to prepare students for the issues involved in making appropriate inferences from data. The need is compounded by the fact that studies that exist have worked with data sets that students themselves collected, whereas the many electronic data sets, proliferating in the public domain, pose different challenges. This project will develop an approach to support fourth grade students' data literacy with complex, large-scale, professionally collected data sets. The work will focus on analytical thinking as a subset of data literacy, specifically evaluating and interpreting data. The project will teach students about working with geoscience data, which connect to observable, familiar aspects of the natural world and align with Earth science curriculum standards. An interdisciplinary team of educators, researchers, and scientists from the Oceans of Data Institute at Educational Development Center and the American Geological Institute will (1) conduct baseline research to understand students' natural affinities for understanding inference from complex data and phenomena; (2) develop and test scaffolding activities that leverage students' intellectual assets and minimize barriers to analytical thinking with professionally collected data; and (3) examine the degree to which the resulting activities support students to do productive work with professionally collected data. In developing an instructional approach, the project informs generally how professionally collected, scientific data can be used to support elementary students to develop data literacy skills.

Hypothesizing that science, technology, engineering, and mathematics (STEM) education generally can benefit from the instructional use of complex, large, interactive, and professionally-collected (CLIP) data sets (e.g., related to precipitation, stream flow, and groundwater levels), this study will explore approaches to integrating those data into fourth grade classroom instruction. The research is based on a premise that students who engage with CLIP data early in their classroom STEM experiences will develop skills and attitudes that promote meaningful analyses of those data earlier than if that exposure is delayed until secondary courses. The project will use a three-phase iterative design that will unfold in three urban and suburban school districts in Virginia and Maryland. Phase one will focus on creating a baseline of the reasoning students employ when making inferences from data. It will involve 45 students from grades 3-5 in targeted interviews, which will be recorded, transcribed and analyzed. Phases two and three will focus on design and development in grade 4. Phase two will develop and test activities through an iterative design plan that employs a semi-clinical method with small groups of students. Phase three will implement the activities that result from that process in six classrooms across three districts with approximately 150 students. A scoring rubric that captures student learning will be constructed in phase two and used to measure impacts of the field testing in phase three. Observations and interviews will also be conducted at field sites to understand what students learn about analytical thinking from the activities.

Streams of Data: Nurturing Data Literacy in Young Science Learners (Collaborative Research: Kochevar)

This project will develop an approach to support fourth grade students' data literacy with complex, large-scale, professionally collected data sets. The work will focus on analytical thinking as a subset of data literacy, specifically evaluating and interpreting data. The project will teach students about working with geoscience data, which connect to observable, familiar aspects of the natural world and align with Earth science curriculum standards.

Partner Organization(s): 
Award Number: 
1906264
Funding Period: 
Mon, 07/01/2019 to Thu, 06/30/2022
Full Description: 

These skills are essential for working with scientific data sets, but educators know very little about how to prepare students for the issues involved in making appropriate inferences from data. The need is compounded by the fact that studies that exist have worked with data sets that students themselves collected, whereas the many electronic data sets, proliferating in the public domain, pose different challenges. This project will develop an approach to support fourth grade students' data literacy with complex, large-scale, professionally collected data sets. The work will focus on analytical thinking as a subset of data literacy, specifically evaluating and interpreting data. The project will teach students about working with geoscience data, which connect to observable, familiar aspects of the natural world and align with Earth science curriculum standards. An interdisciplinary team of educators, researchers, and scientists from the Oceans of Data Institute at Educational Development Center and the American Geological Institute will (1) conduct baseline research to understand students' natural affinities for understanding inference from complex data and phenomena; (2) develop and test scaffolding activities that leverage students' intellectual assets and minimize barriers to analytical thinking with professionally collected data; and (3) examine the degree to which the resulting activities support students to do productive work with professionally collected data. In developing an instructional approach, the project informs generally how professionally collected, scientific data can be used to support elementary students to develop data literacy skills.

Hypothesizing that science, technology, engineering, and mathematics (STEM) education generally can benefit from the instructional use of complex, large, interactive, and professionally-collected (CLIP) data sets (e.g., related to precipitation, stream flow, and groundwater levels), this study will explore approaches to integrating those data into fourth grade classroom instruction. The research is based on a premise that students who engage with CLIP data early in their classroom STEM experiences will develop skills and attitudes that promote meaningful analyses of those data earlier than if that exposure is delayed until secondary courses. The project will use a three-phase iterative design that will unfold in three urban and suburban school districts in Virginia and Maryland. Phase one will focus on creating a baseline of the reasoning students employ when making inferences from data. It will involve 45 students from grades 3-5 in targeted interviews, which will be recorded, transcribed and analyzed. Phases two and three will focus on design and development in grade 4. Phase two will develop and test activities through an iterative design plan that employs a semi-clinical method with small groups of students. Phase three will implement the activities that result from that process in six classrooms across three districts with approximately 150 students. A scoring rubric that captures student learning will be constructed in phase two and used to measure impacts of the field testing in phase three. Observations and interviews will also be conducted at field sites to understand what students learn about analytical thinking from the activities.

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

Award Number: 
1908900
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

California State University will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities (NIC sites). Networked Improvement Community (NIC) will co-create a shared vision and co-defined research agenda between university researchers, science educators and school district practitioners working together to reform teacher education across a variety of local contexts. By studying outcomes of shared supports and teacher tools for use in multiple steps along the science teacher education pathway, researchers will map variation existing in the system and align efforts across the science teacher education pathway. This process will integrate an iterative nature of educational change in local contexts impacting enactment of the NGSS in both university teacher preparation programs and in school district professional training activities and classrooms.

The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts. The project will accomplish this goal 1) leveraging the use of an established Networked Improvement Community, composed of science education faculty from eight university campuses and by 2) improving and studying coherence in the steps along the science teacher education pathway within and across these universities and school districts. The project will use a mixed methods approach to data collection and analysis. Consistent with Improvement Science Theory, research questions will be co-defined by all stakeholders.

Getting Unstuck: Designing and Evaluating Teacher Resources to Support Conceptual and Creative Fluency with Programming

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.

Lead Organization(s): 
Award Number: 
1908110
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming. K-12 introductory programming experiences are often highly scaffolded, and it can be challenging for students to transition from constrained exercises to open-ended programming activities encountered later in-and out of-school. Teachers can provide critical support to help students solve problems and develop the cognitive, social, and emotional capacities required for conceptually and creatively complex programming challenges. Teachers - particularly elementary and middle school teachers, especially in rural and Title I schools - often lack the programming content knowledge, skills, and practices needed to support deeper and more meaningful programming experiences for students. Professional development opportunities can cultivate teacher expertise, especially when supported by curricular materials that bridge teachers' professional learning and students' classroom learning. This research responds to these needs, addressing key national priorities for increasing access to high-quality K-12 computer science education for all students through teacher professional development.

The project will involve the design and evaluation of (1) an online learning experience for teachers to develop conceptual and creative fluency through short, daily programming prompts (featuring the Scratch programming environment), and (2) educative curricular materials for the classroom (based on the online experience). The online experience and curricular materials will be developed in collaboration with three 4th through 6th-grade rural or Title I teachers. The project will evaluate teacher learning in the online experience using mixed-methods analyses of pre/post-survey data of teachers' perceived expertise and quantitative analyses of teachers' programs and evolving conceptual knowledge. Three additional 4th through 6th-grade teachers will pilot the curricular materials in their classrooms. The six pilot teachers will maintain field journals about their experiences and will participate in interviews, evaluating use of the resources in practice. An ethnography of one teacher's classroom will be developed to further contribute to understandings of the classroom-level resources in action, including students' experiences and learning. Student learning will be evaluated through student interviews and analyses of student projects. Project outcomes will inform how computer science conceptual knowledge and creative fluency can be developed both for teachers and their students' knowledge and fluency that will be critical for students' future success in work and life.

Co-developing a Curriculum Coherence Toolkit with Teachers (Collaborative Research: Drake)

This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.

Lead Organization(s): 
Award Number: 
1908165
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

One important aspect of any mathematics curriculum is its coherence, or the mathematical connections across lessons. This coherence links lessons and activities so that mathematical ideas, representations, practices, skills, and ways of thinking build upon each other to help students construct mathematical meaning and enhance their learning. When teachers relied predominantly on published curriculum materials, curricular coherence was largely provided by the curriculum authors. However, many of today's teachers are no longer given a foundational textbook or single set of resources. Further, teachers have unprecedented access via the internet and social media to lessons and activities produced by many different curriculum developers (including other teachers). As a result, the important task of building curricular coherence becomes the responsibility of the classroom teacher. And yet, very little is known about how teachers think about curricular coherence or how their decisions about lessons and activities reflect the coherent mathematical story they hope to students will learn in their classrooms. This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum. A national survey of 300 Grades 3-5 teachers will be conducted in in the first phase of the project and the work will continue with small groups of four case study teachers in each of four different districts across four states. Case study participants will work with project researchers to co-develop a set of tools for supporting curriculum coherence. The structure of the project and the selection of case study participants will facilitate the collaborative co-development of tools across institutions and across geographic and curricular contexts, supporting the use of the tools across a wide range of contexts. The outcomes of this study will contribute to broader impacts by developing understandings of curriculum coherence that are robust across a range of curricular, policy, and district/school contexts, with implications that support the participation of students in diverse mathematics classrooms. The survey findings and the coherence toolkit co-developed with teachers will be disseminated widely through conference presentations, including teacher-oriented conferences, through journal publications, and through making survey data available to other researchers.

The research objectives of this study are to explore 1) patterns of Grade 3-5 teacher curricular resource use across a range of curriculum contexts, 2) teacher decisions about curriculum coherence, and 3) how curriculum toolkits co-developed with teachers might support teachers in making decisions related to curriculum coherence. Given the potential variation among and within states and districts in terms of contextual factors impacting curriculum use, teachers will be surveyed about their contexts, available resources, and curricular decision-making. Survey data will be analyzed using primarily descriptive analyses. Following the survey, in-depth case studies of teacher curricular resource use in contexts that vary along two dimensions (autonomy to select curricular resources and the complexity of curricular influences, including the number of resources available) will be developed. Case study data, including interviews, video-recorded co-design groups, and curriculum use artifacts, will be analyzed using methods of discourse analysis, thematic analysis, and document analysis and synthesized within and across cases. By selecting cases along these dimensions, a set of tools will be co-developed to support teachers as they navigate diverse curricular contexts to enact a coherent curriculum for students.

Co-developing a Curriculum Coherence Toolkit with Teachers (Collaborative Research: Wood)

This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.

Lead Organization(s): 
Award Number: 
1907831
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

One important aspect of any mathematics curriculum is its coherence, or the mathematical connections across lessons. This coherence links lessons and activities so that mathematical ideas, representations, practices, skills, and ways of thinking build upon each other to help students construct mathematical meaning and enhance their learning. When teachers relied predominantly on published curriculum materials, curricular coherence was largely provided by the curriculum authors. However, many of today's teachers are no longer given a foundational textbook or single set of resources. Further, teachers have unprecedented access via the internet and social media to lessons and activities produced by many different curriculum developers (including other teachers). As a result, the important task of building curricular coherence becomes the responsibility of the classroom teacher. And yet, very little is known about how teachers think about curricular coherence or how their decisions about lessons and activities reflect the coherent mathematical story they hope to students will learn in their classrooms. This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum. A national survey of 300 Grades 3-5 teachers will be conducted in in the first phase of the project and the work will continue with small groups of four case study teachers in each of four different districts across four states. Case study participants will work with project researchers to co-develop a set of tools for supporting curriculum coherence. The structure of the project and the selection of case study participants will facilitate the collaborative co-development of tools across institutions and across geographic and curricular contexts, supporting the use of the tools across a wide range of contexts. The outcomes of this study will contribute to broader impacts by developing understandings of curriculum coherence that are robust across a range of curricular, policy, and district/school contexts, with implications that support the participation of students in diverse mathematics classrooms. The survey findings and the coherence toolkit co-developed with teachers will be disseminated widely through conference presentations, including teacher-oriented conferences, through journal publications, and through making survey data available to other researchers.

The research objectives of this study are to explore 1) patterns of Grade 3-5 teacher curricular resource use across a range of curriculum contexts, 2) teacher decisions about curriculum coherence, and 3) how curriculum toolkits co-developed with teachers might support teachers in making decisions related to curriculum coherence. Given the potential variation among and within states and districts in terms of contextual factors impacting curriculum use, teachers will be surveyed about their contexts, available resources, and curricular decision-making. Survey data will be analyzed using primarily descriptive analyses. Following the survey, in-depth case studies of teacher curricular resource use in contexts that vary along two dimensions (autonomy to select curricular resources and the complexity of curricular influences, including the number of resources available) will be developed. Case study data, including interviews, video-recorded co-design groups, and curriculum use artifacts, will be analyzed using methods of discourse analysis, thematic analysis, and document analysis and synthesized within and across cases. By selecting cases along these dimensions, a set of tools will be co-developed to support teachers as they navigate diverse curricular contexts to enact a coherent curriculum for students.

Co-developing a Curriculum Coherence Toolkit with Teachers (Collaborative Research: Newton)

This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.

Project Email: 
Lead Organization(s): 
Award Number: 
1907808
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Project Evaluator: 
Full Description: 

One important aspect of any mathematics curriculum is its coherence, or the mathematical connections across lessons. This coherence links lessons and activities so that mathematical ideas, representations, practices, skills, and ways of thinking build upon each other to help students construct mathematical meaning and enhance their learning. When teachers relied predominantly on published curriculum materials, curricular coherence was largely provided by the curriculum authors. However, many of today's teachers are no longer given a foundational textbook or single set of resources. Further, teachers have unprecedented access via the internet and social media to lessons and activities produced by many different curriculum developers (including other teachers). As a result, the important task of building curricular coherence becomes the responsibility of the classroom teacher. And yet, very little is known about how teachers think about curricular coherence or how their decisions about lessons and activities reflect the coherent mathematical story they hope to students will learn in their classrooms. This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum. A national survey of 300 Grades 3-5 teachers will be conducted in in the first phase of the project and the work will continue with small groups of four case study teachers in each of four different districts across four states. Case study participants will work with project researchers to co-develop a set of tools for supporting curriculum coherence. The structure of the project and the selection of case study participants will facilitate the collaborative co-development of tools across institutions and across geographic and curricular contexts, supporting the use of the tools across a wide range of contexts. The outcomes of this study will contribute to broader impacts by developing understandings of curriculum coherence that are robust across a range of curricular, policy, and district/school contexts, with implications that support the participation of students in diverse mathematics classrooms. The survey findings and the coherence toolkit co-developed with teachers will be disseminated widely through conference presentations, including teacher-oriented conferences, through journal publications, and through making survey data available to other researchers.

The research objectives of this study are to explore 1) patterns of Grade 3-5 teacher curricular resource use across a range of curriculum contexts, 2) teacher decisions about curriculum coherence, and 3) how curriculum toolkits co-developed with teachers might support teachers in making decisions related to curriculum coherence. Given the potential variation among and within states and districts in terms of contextual factors impacting curriculum use, teachers will be surveyed about their contexts, available resources, and curricular decision-making. Survey data will be analyzed using primarily descriptive analyses. Following the survey, in-depth case studies of teacher curricular resource use in contexts that vary along two dimensions (autonomy to select curricular resources and the complexity of curricular influences, including the number of resources available) will be developed. Case study data, including interviews, video-recorded co-design groups, and curriculum use artifacts, will be analyzed using methods of discourse analysis, thematic analysis, and document analysis and synthesized within and across cases. By selecting cases along these dimensions, a set of tools will be co-developed to support teachers as they navigate diverse curricular contexts to enact a coherent curriculum for students.

Alternative video text
Alternative video text: 

Developing Organizational Capacity to Improve K-8 Mathematics Teaching and Learning

This project will develop and test a leadership model to improve K-8 mathematics teaching and learning by involving stakeholders across the K-8 spectrum. The project will support teachers, teacher leaders, and administrators in collectively identifying and addressing problems of practice in the teaching and learning of mathematics, and in turn develop plans to improve school and district organizational capacities to support stronger mathematics teaching.

Award Number: 
1907681
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

The Developing Organizational Capacity to Improve K-8 Mathematics Teaching and Learning is a 4-year implementation and improvement project. The project will develop and test a leadership model to improve K-8 mathematics teaching and learning by involving stakeholders across the K-8 spectrum. The project will support teachers, teacher leaders, and administrators in collectively identifying and addressing problems of practice in the teaching and learning of mathematics, and in turn develop plans to improve school and district organizational capacities to support stronger mathematics teaching. At the heart of the project is the Elementary Mathematics Leadership (EML) model, which is designed to improve stakeholder understandings of effective math teaching practices. The EML model involves collaboratively identifying classroom-based problems of practice with school and district personnel, designing and implementing professional development aligned with the problems of practice, and iterating those cycles of development, implementation, and revision to assess the model's effectiveness.

The EML model operates at the teacher, school, and district level using a design-based implementation research approach. At the district level, leadership teams in conjunction with researchers will identify problems of practice for which work on those problems will lead to a more coherent mathematics instruction in the district. Following this, professional development and coaching at the teacher level will be designed and implemented to target the problem of practice, with a focus on big ideas within the Common Core State Standards for Mathematics. This phase of the model also includes professional development aimed at school leaders and district administrators to strengthen organizational capacity to support and lead change related to the problem of practice. The final phase of the model calls on researchers, district, and school personnel to engage in an annual redesign of the intervention, making use of data gathered during the school year and evidence about what is happening in classrooms. This design acknowledges the broader policy context in which schools and districts operate as they work towards instructional change. To evaluate the effectiveness of the overall EML model, the project will collect a wide variety of data, including student achievement outcomes using standardized tests; assessments of teachers' mathematical knowledge, instructional practices, and efficacy measures; and measures of leader, administrator, and organizational capacities to support high-quality mathematics instruction. Four districts will be recruited to participate, enacting the model in pairs with a staggered start for one pair of districts to be able to measure treatment effects, using a variation of a switching replications design. Classroom practice and teacher outcomes will be assessed using a variety of MKT assessments, the Mathematical Quality of Instruction (MQI), and the Instructional Quality Assessment (IQA). School level outcomes will be collected via a leadership assessment and interview data, and district level outcomes will be assessed through the use of interview and documentary data. Analysis will include a statistical analysis of the EML model using hierarchical linear modeling, MANOVA/ANOVA, and regression as appropriate at the level of students and teachers, and qualitative analysis and descriptive statistics will be used at the school and district level due to small sample size.

Co-developing a Curriculum Coherence Toolkit with Teachers (Collaborative Research: Olson)

This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.

Lead Organization(s): 
Award Number: 
1907650
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

One important aspect of any mathematics curriculum is its coherence, or the mathematical connections across lessons. This coherence links lessons and activities so that mathematical ideas, representations, practices, skills, and ways of thinking build upon each other to help students construct mathematical meaning and enhance their learning. When teachers relied predominantly on published curriculum materials, curricular coherence was largely provided by the curriculum authors. However, many of today's teachers are no longer given a foundational textbook or single set of resources. Further, teachers have unprecedented access via the internet and social media to lessons and activities produced by many different curriculum developers (including other teachers). As a result, the important task of building curricular coherence becomes the responsibility of the classroom teacher. And yet, very little is known about how teachers think about curricular coherence or how their decisions about lessons and activities reflect the coherent mathematical story they hope to students will learn in their classrooms. This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum. A national survey of 300 Grades 3-5 teachers will be conducted in in the first phase of the project and the work will continue with small groups of four case study teachers in each of four different districts across four states. Case study participants will work with project researchers to co-develop a set of tools for supporting curriculum coherence. The structure of the project and the selection of case study participants will facilitate the collaborative co-development of tools across institutions and across geographic and curricular contexts, supporting the use of the tools across a wide range of contexts. The outcomes of this study will contribute to broader impacts by developing understandings of curriculum coherence that are robust across a range of curricular, policy, and district/school contexts, with implications that support the participation of students in diverse mathematics classrooms. The survey findings and the coherence toolkit co-developed with teachers will be disseminated widely through conference presentations, including teacher-oriented conferences, through journal publications, and through making survey data available to other researchers.

The research objectives of this study are to explore 1) patterns of Grade 3-5 teacher curricular resource use across a range of curriculum contexts, 2) teacher decisions about curriculum coherence, and 3) how curriculum toolkits co-developed with teachers might support teachers in making decisions related to curriculum coherence. Given the potential variation among and within states and districts in terms of contextual factors impacting curriculum use, teachers will be surveyed about their contexts, available resources, and curricular decision-making. Survey data will be analyzed using primarily descriptive analyses. Following the survey, in-depth case studies of teacher curricular resource use in contexts that vary along two dimensions (autonomy to select curricular resources and the complexity of curricular influences, including the number of resources available) will be developed. Case study data, including interviews, video-recorded co-design groups, and curriculum use artifacts, will be analyzed using methods of discourse analysis, thematic analysis, and document analysis and synthesized within and across cases. By selecting cases along these dimensions, a set of tools will be co-developed to support teachers as they navigate diverse curricular contexts to enact a coherent curriculum for students.

Pages

Subscribe to Elementary School