Teacher Attitudes/Beliefs

Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418270
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

Promoting Active Learning Strategies in Biology (PALS)

This project examines the potential of two research-based and college-tested active learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction by adapting the strategies for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science.

Award Number: 
1417735
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

The use of active learning strategies has long been advocated in the sciences, but high school science instruction remains highly didactic across the country. This project addresses this longstanding concern by examining the potential of two research-based and college-tested learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction. The POGIL strategy was developed initially for chemistry classes, and Peer Instruction was developed within physics classes. These two learning strategies will be adapted for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science. The project will also study the influence of these instructional strategies on teacher beliefs about active learning and the contributions of these beliefs on student success in biology. Creation of the professional development model and materials for this project bring together high school biology teachers, university biology faculty, and science education specialists.

The project will conduct design and development research to iteratively develop the instructional materials through a collaboration of high school teachers and college faculty members experienced in using the instructional approaches being compared. Adaptation of the learning strategies for use in biology was chosen because biology is the science course most often taught across schools in the country, and it is required for graduation in the state where this project is being conducted. To compare the outcomes of the two instructional approaches, 42 teacher pairs will be randomly assigned to one of three treatment groups: POGIL, Peer Instruction, or traditional instruction. Outcomes of the instructional approaches will be measured in terms of conceptual gains among teachers and students, attitudes toward science, personal agency beliefs, and instructional implementation fidelity.

Investigating How to Enhance Scientific Argumentation through Automated Feedback in the Context of Two High School Earth Science Curriculum Units

This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations. 

Lead Organization(s): 
Award Number: 
1418019
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

With the current emphasis on learning science by actively engaging in the practices of science, and the call for integration of instruction and assessment; new resources, models, and technologies are being developed to improve K-12 science learning. Student assessment has become a nationwide educational priority due, in part, to the need for relevant and timely data that inform teachers, administrators, researchers, and the public about how all students perform and think while learning science. This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations. The project will apply advanced automated scoring tools to students' written scientific arguments, provide individual students with customized feedback, and teachers with class-level information to assist them with improving scientific argumentation. The key outcome of this effort will be a technology-supported assessment model of how to advance the understanding of argumentation, and the use of multi-level feedback as a component of effective teaching and learning. The project will strengthen the program's current set of funded activities on assessment, focusing these efforts on students' argumentation as a complex science practice.

This design and development research targets high school students (n=1,940) and teachers (n=22) in up to 10 states over four years. The research questions are: (1) To what extent can automated scoring tools, such as c-rater and c-rater-ML, diagnose students' explanations and uncertainty articulations as compared to human diagnosis?; (2) How should feedback be designed and delivered to help students improve scientific argumentation?; (3) How do teachers use and interact with class-level automated scores and feedback to support students' scientific argumentation with real-data and models?; and (4) How do students perceive their overall experience with the automated scores and immediate feedback when learning core ideas in climate change and fresh-water availability topics through scientific argumentation enhanced with modeling? In Years 1 and 2, plans are to conduct feasibility studies to build automated scoring models and design feedback for previously tested assessments for the two curriculum units. In Year 3, the project will implement design studies in order to identify effective feedback through random assignment. In Year 4, a pilot study will investigate if effective feedback should be offered with or without scores. The project will employ a mixed-methods approach. Data-gathering strategies will include classroom observations; screencast and log data of teachers' and students' interaction with automated feedback; teachers' and students' surveys with selected- and open-ended questions; and in-depth interviews with teachers and students. All constructed-response explanations and uncertainty items will be scored using automated scoring engines with fine-grained rubrics. Data analysis strategies will include multiple criteria to evaluate the quality of automated scores; descriptive statistical abalyses; analysis of variance to investigate differences in outcomes from the designed studies' pre/posttests and embedded assessments; analysis of covariance to investigate student learning trajectories; two-level hierarchical linear modeling to study the clustering of students within a class; and analysis of screencasts and log data.

Instructional Leadership for Scientific Practices: Resources for Principals in Evaluating and Supporting Teachers' Science Instruction

This project will research the knowledge and supervision skills principals' and other instructional leaders' need to support teachers in successfully integrating scientific practices into their instruction, and develop innovative resources to support these leaders with a particular focus on high-minority, urban schools. The project will contribute to the emerging but limited literature on instructional leadership in science at the K-8 school level. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1415541
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Although K-8 principals are responsible for instructional improvement across all subject areas, their focus has traditionally been on literacy and mathematics and only occasionally on science content and practice. New standards and assessments in science require that principals and other instructional leaders provide significant support to teachers to help them successfully integrate scientific practices into their instruction. There is evidence that these instructional leaders often lack the knowledge, resources or skills to provide this support. This project will research the knowledge and supervision skills principals' and other instructional leaders' need to support teachers in successfully integrating scientific practices into their instruction, and develop innovative resources to support these leaders with a particular focus on high-minority, urban schools. The project will contribute to the emerging but limited literature on instructional leadership in science at the K-8 school level.

The resources developed will involve: (1) Introducing scientific practices (including rationales, descriptions and vignettes illustrating each of the 8 scientific practices); (2) Using tools in schools (providing an observation protocol, teacher feedback form and improvement planning template); and (3) Analyzing sample video (including links to video of K-8 science instruction, completed supervision tools, explanations of their coding, and discussion of how to use them with teachers). The project will conduct in-depth interviews with four principals, work with 25 principals in the Boston Public Schools to iteratively design and test the resources. The project will also develop a measure of Leadership Content Knowledge of Scientific Practices (LCK-SP) which will be used to assess principals' knowledge. The project's research component will: (1) investigate principals' current knowledge about scientific practices and methods for supervision of science instruction; and (2) examine how resources can be designed to support instructional leaders' content knowledge of scientific practices.

Identifying an Effective and Scalable Model of Lesson Study

This project investigates the variation in teachers' practice of lesson study to identify effective and scalable design features of lesson study associated with student mathematics achievement growth in Florida. Lesson study is a teacher professional development model in which a group of teachers works collaboratively to plan a lesson, observe the lesson in a classroom with students, and analyze and discuss the student work and understanding in response to the lesson.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417585
Funding Period: 
Fri, 08/01/2014 to Mon, 07/31/2017
Full Description: 

This project investigates the variation in teachers' practice of lesson study to identify effective and scalable design features of lesson study associated with student mathematics achievement growth in Florida. Lesson study is a teacher professional development model in which a group of teachers works collaboratively to plan a lesson, observe the lesson in a classroom with students, and analyze and discuss the student work and understanding in response to the lesson. Florida is the first state to promote lesson study as a statewide professional development model for implementing the Common Core State Standards for Mathematics and improving instruction and student achievement. The original lesson study model imported from Japan poses a challenge for implementation and scalability in the United States, and there is emerging evidence that modifications have been made to make it feasible within the constraints of teachers' work schedules and school structures. Thus, there is an urgent need to investigate the variation in lesson study practice and how modified design features of mathematics lesson study are associated with improvement of student mathematics achievement. The research team will conduct a statewide survey of approximately 1,000 teachers in grades 3-8 who are practicing mathematics lesson study during the 2015-2016 academic year. They will examine variations in four design features of lesson study (structure, facilitator, knowledge resources for lesson planning, and research lesson and discussion) and their associated organizational supports. They will examine the relationships between these design features and the original lesson study model, teacher learning, and students' mathematics achievement growth.

This project is designed to advance the scholarship and practice of lesson study by: (1) identifying an effective and scalable model of mathematics lesson study with specific design features that are associated with positive teacher learning experience and improved student mathematics achievement; (2) advancing practical knowledge on how this effective and scalable model of mathematics lesson study can be practiced, based on in-depth case studies of lesson study groups; and (3) contributing to teacher learning principles that can be applied to various professional development programs in mathematics. The project will disseminate evidence regarding the characteristics of an effective and scalable mathematics lesson study model to state and district-level facilitators across the country. The project will also develop a Florida Lesson Study Network (FLSN) to share resources and facilitate communications regarding lesson study practice.

From Elementary Generalist to Mathematics Specialist: Examining Teacher Practice and Student Outcomes in Departmental and Self-Contained Models

This research investigates student mathematics learning outcomes at the elementary level in relation to teacher expertise (elementary teachers with math specialist certification versus generally prepared elementary teachers) and school organization (departmentalized versus self-contained mathematics classrooms). Findings will provide evidence of the impact of content-specific teacher expertise and a departmentalized school organizational model that offers students access to well-qualified teachers of mathematics with no additional staffing costs.

Lead Organization(s): 
Award Number: 
1414438
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Full Description: 

This research investigates student mathematics learning outcomes at the elementary level in relation to teacher expertise (elementary teachers with math specialist certification versus generally prepared elementary teachers) and school organization (departmentalized versus self-contained mathematics classrooms). University of Missouri researchers will organize and facilitate the research in multiple Missouri public and private school sites. Findings will provide evidence of the impact of content-specific teacher expertise and a departmentalized school organizational model that offers students access to well-qualified teachers of mathematics with no additional staffing costs. To investigate the impact of teacher expertise and school organization on student learning experimental, quasi-experimental, and qualitative designs are employed. Specifically, 80 teachers who have earned state certification as Elementary Mathematics Specialists (hereafter, "EMS teachers") will be selected to participate in the study. Employing a randomized experimental design, half of the EMS teachers will be assigned to teach in a departmental model (Condition 1) in their school, teaching two or more sections of grade 4 mathematics. The other half will remain in generalist (hereafter, self-contained) positions (Condition 2) in their school, teaching all regular subjects to a single class of students. A comparison group of 40 non-EMS teachers with self-contained teaching assignments (Condition 3) will be selected from the same schools in Condition 2. The Smarter Balanced assessment will provide a baseline measure of students' prior achievement in grade 3 and also a measure of the mathematics achievement of grade 4 students taught by the 120 teachers in the study. The project team will analyze student-level mathematics scores linked with specific teachers.

Improving student achievement in mathematics at the elementary level is particularly challenging due to the way elementary students are generally organized for instruction (e.g., one teacher responsible for teaching all subjects to 25-30 students). Because elementary teachers must be knowledgeable about many content areas, they rarely study mathematics in depth, even though there is a growing body of evidence showing the impact of specialized mathematical knowledge for teaching on student learning outcomes. This study carefully researches an alternative model, where elementary teachers with special training in mathematics teaching and learning are assigned more than one single class of students for mathematics instruction. Findings from the research will provide evidence about the impact of both certification as an elementary mathematics specialist and teaching in a departmental assignment on student learning. The results will help school and district leaders better plan for assignment of staff to provide all students with access to high quality mathematics instruction.

Focus on Energy: Preparing Elementary Teachers to Meet the NGSS Challenge (Collaborative Research: Seeley)

This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418211
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy.

This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.

Teaching STEM with Robotics: Design, Development, and Testing of a Research-based Professional Development Program for Teachers

Using design-based research, with teachers as design partners, the project will create and refine project-based, hands-on robotics curricula such that science and math content inherent in robotics and related engineering design practices are learned. To provide teachers with effective models to capitalize on robotics for elucidating science and math concepts, a design-based Professional Development program will be built using principles of technological, pedagogical, and content knowledge (TPACK).

Lead Organization(s): 
Award Number: 
1417769
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Offering meaningful and motivating engineering contexts, such as robotics, within science and math courses constitutes a compelling strategy to address the Next Generation Science Standards and the Common Core State Standards for Math while enhancing science and math learning for all students. Using design-based research, with teachers as design partners, the project will create and refine project-based, hands-on curricula such that science and math content inherent in robotics and related engineering design practices are learned. To provide teachers with effective models to capitalize on robotics for elucidating science and math concepts, a design-based Professional Development program will be built using principles of technological, pedagogical, and content knowledge (TPACK). To ensure that teachers are well prepared, research-based practices and features of effective Professional Development will be adopted. Experts in robotics, engineering, education, curriculum design, and assessment--with experience in K-12 education, training, and outreach--have formed an interdisciplinary team to make robotics central to and sustainable in middle school science and math classrooms.

The research questions addressed in this project are qualitative in nature as appropriate for design research questions. The methodologies include teacher needs assessment, teachers' perceptions of robotics, pre and post testing, classroom observations, and surveys. Examples of the research questions are:

What characteristics of robotics promote effective learning of middle school science and math?

What elements of Professional Development engender teachers' TPACK of robotics and link it with classroom science and math?

What are student prerequisites to effectively use robotics in science and math learning?

What are the gains in students' STEM engagement, interest, persistence, and career awareness?

The robotics curriculum will include physical science used in robot performance expectations and motion stability. Additionally the curriculum will include the engineering design process consisting of problem definition, solution development, and design improvement. Robotics provides opportunities to support science and engineering practices of the Next Generation Science Standards such as developing and using models, planning and conducting investigations, designing solutions, and analyzing and interpreting data. The project will be aimed at middle school students and will provide substantial teacher professional development to implement the new curriculum modules. The partner schools have student bodies drawn from a diverse student population in New York City.

Computer Science in Secondary Schools (CS3): Studying Context, Enactment, and Impact

This project will examine the relationships among the factors that influence the implementation of the Exploring Computer Science (ECS), a pre-Advanced Placement curriculum that prepares students for further study in computer science. This study elucidates how variation in curricular implementation influences student learning and determines not only what works, but also for whom and under what circumstances.

Lead Organization(s): 
Award Number: 
1418149
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Full Description: 

Computational thinking is an important set of 21st century knowledge and skills that has implications for the heavily technological world in which we live. Multiple industries indicate the under supply of those trained to be effective in the computer science workforce. In addition, there are increasing demands for broadening the participation in the computer science workforce by women and members of minority populations. SRI International will examine the relationships among the factors that influence the implementation of the Exploring Computer Science (ECS), a pre-Advanced Placement curriculum that prepares students for further study in computer science. SRI will work in partnership with the ECS curriculum developers, teachers, and the nonprofit Code.org who are involved in the scaling of ECS. This study elucidates how variation in curricular implementation influences student learning and determines not only what works, but also for whom and under what circumstances.

SRI will conduct a pilot study in which they develop, pilot, and refine measures as they recruit school districts for the implementation study. The subsequent implementation study will be a 2 year examination of curriculum enactment, teacher practice, and evidence of student learning. Because no comparable curriculum currently exists, the study will examine the conditions needed to implement the ECS curriculum in ways that improve student computational thinking outcomes rather than determine whether the ECS curriculum is more effective than other CS-related curricula. The study will conduct two kinds of analyses: 1) an analysis of the influence of ECS on student learning gains, and 2) an analysis of the relationship between classroom-level implementation and student learning gains. Because of the clustered nature of the data (students nested within classrooms nested within schools), the project will use hierarchical linear modeling to examine the influence of the curriculum.

One Year After Science's Grand Challenges in Education: Professional Empowerment of STEM Teachers' Through Education Policy and Decision Making

Following up on a special issue of Science (August 2013) that identified several Grand Challenges in Science Education, this project proposes a convocation to more deeply explore those challenges that are particularly relevant for K-12 teachers and highlights the roles teachers can play on issues vital to the improvement of K-12 STEM education.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1406780
Funding Period: 
Sat, 02/15/2014 to Sat, 01/31/2015
Full Description: 

Following up on a special issue of Science (August 2013) that identified several Grand Challenges in Science Education, this project proposes a convocation to more deeply explore those challenges that are particularly relevant for K-12 teachers and highlights the roles teachers can play on issues vital to the improvement of K-12 STEM education.

The convocation will: (1) pull together the evidence base on whether involving teachers in education policy and decision-making leads to improvements in policies; (2) identify the models of teacher engagement at the national, state, and local levels that currently exist; and (3) identify the kinds of communication efforts, resources and other activities that are needed to help policymakers better understand the role of teachers in these processes. The convocation addresses several important and timely questions: (1) how to help teachers engage in important education issues beyond their classrooms, and (2) what kinds of networks or mechanisms might be identified to accomplish that engagement.

Following the meeting, materials will be developed that will be available both in hard copy and as PDF files from the National Academies Press.

Pages

Subscribe to Teacher Attitudes/Beliefs