Teacher Attitudes/Beliefs

An Online STEM Career Exploration and Readiness Environment for Opportunity Youth

This project aims to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM) that will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways.

Award Number: 
1620904
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

CAST, the University of Massachusetts-Amherst, and YouthBuild USA aim to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM). This will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways. The program will provide opportunity youth with a personalized and portable tool to explore STEM careers, demonstrate their STEM learning, reflect on STEM career interests, and take actions to move ahead with STEM career pathways of interest.

The proposed program addresses two critical and interrelated aspects of STEM learning for opportunity youth: the development of STEM foundational knowledge; and STEM engagement, readiness and career pathways. These aspects of STEM learning are addressed through an integrated program model that includes classroom STEM instruction; hands-on job training in career pathways including green construction, health care, and technology.


Project Videos

2020 STEM for All Video Showcase

Title: STEMfolio: A Portfolio Builder & Career Exploration Tool

Presenter(s): Tracey Hall

2019 STEM for All Video Showcase

Title: Building a Diverse STEM Talent Pipeline: Finding What Works

Presenter(s): Tracey Hall

2018 STEM for All Video Showcase

Title: Bridging the Gap Between Ability and Opportunity in STEM

Presenter(s): Sam Johnston


Improving the Implementation of Rigorous Instructional Materials in Middle Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Ahn)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Award Number: 
1911492
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

This project was previously funded under award #1620900 and 1719744.

 

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

Lead Organization(s): 
Award Number: 
1621325
Funding Period: 
Fri, 07/15/2016 to Wed, 06/30/2021
Full Description: 

This project at Jackson State University will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary science and mathematics teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools. The project involves a partnership among three historically Black universities (Jackson, State University, Xavier University of Louisiana, and the University of Arkansas at Pine Bluff), and diverse urban and rural school districts in Jackson, Mississippi; New Orleans, Louisiana; and Pine Bluff Arkansas region that serve more than 175,000 students.

Participants will include 150 middle and secondary school teacher residents who will gain clinical mentored experience and develop familiarity with local schools. The 150 teacher residents supported by the program to National Board certification will obtain: state licensure/certification in science teaching, a master's degree, and initiation. The goal is to increase teacher retention and diversity rates. The research question guiding this focus is: Will training STEM graduates have a significant effect on the quality of K-12 instruction, teacher efficacy and satisfaction, STEM teacher retention, and students? Science and mathematics achievement? A quasi-experimental design will be used to evaluate project's effectiveness.

Supporting Teacher Practice to Facilitate and Assess Oral Scientific Argumentation: Embedding a Real-Time Assessment of Speaking and Listening into an Argumentation-Rich Curriculum (Collaborative Research: Greenwald)

The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

Partner Organization(s): 
Award Number: 
1621441
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This is an early-stage design and development collaborative study submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) program, in response to Program Solicitation NSF 15-592. The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. To achieve this purpose, the project will examine the validity of a new technology-based formative assessment tool for classroom argumentation--"Diagnosing the Argumentation Levels of Groups" (DiALoG)--for which psychometric validation work has been conducted in a laboratory setting. The DiALoG assessment tool allows teachers to document classroom talk and display scores across multiple dimensions--both intrapersonal and interpersonal--for formative assessment purposes. The project will work with 6th-8th grade science teachers to monitor and support argumentation through real-time formative assessment data generated by the DiALoG instrument. DiALoG will be used in conjunction with "Amplify Science", a Lawrence Hall of Science-developed curriculum that incorporates the science practice of engaging in argument from evidence, and a suite of newly developed Responsive Mini-Lessons (RMLs), which consist of 20-30 minute instructional strategies designed to assist teachers to provide feedback to students' thinking and follow-up to argumentation episodes that the DiALoG tool identifies in need of further support. The study will allow the refinement and expansion of DiALoG and evaluation of its impact on teacher pedagogical content knowledge and formative assessment practices in widespread classroom use.

The project will address two specific research questions: (1) How can DiALoG be refined to provide a formative assessment tool for oral argumentation that is reliable, practical, and useful in middle school classrooms?; and (2) How does the use of DiALoG affect teacher formative assessment practices around evidence-based argumentation, when implementing science units designed to support oral argumentation? In order to answer these questions, the project will conduct a randomized control trial with 100 teachers: 50 will teach argumentation-focused curriculum with DiALoG, 50 will teach the same curriculum without DiALoG. Both control and treatment teachers will receive all digital and physical materials needed to teach three Amplify Science curriculum units. Treatment teachers will be provided also with the most recent version of DiALoG, including the linked RMLs, as well as support materials for using DiALoG with the Amplify curriculum. A subgroup of focus teachers (5 from the treatment group, and 5 from the control group) will be the subject of additional data collection and analysis. Three focus lessons, in which students are engaging in small-group or whole-class oral argumentation, will be selected from each of the three Amplify Science curricular units. Teacher measures for the randomized control trial will include validated instruments, such as (a) a pre- and post-assessment of teacher pedagogical content knowledge; (b) post-lesson and post-unit surveys in which teachers will self-report on their formative assessment practices; and (c) video recordings of selected lessons in the focus classrooms. In order to observe potential differences in formative assessment practices between treatment and control, protocols will be used to analyze the video recordings of focus classrooms, including (a) Reformed Teaching Observation Protocol; (b) Assessment of Scientific Argumentation inside the Classroom; and (c) Formative Assessment for Teachers and Students. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

Supporting Teacher Practice to Facilitate and Assess Oral Scientific Argumentation: Embedding a Real-Time Assessment of Speaking and Listening into an Argumentation-Rich Curriculum (Collaborative Research: Henderson)

The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

Lead Organization(s): 
Award Number: 
1621496
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This is an early-stage design and development collaborative study submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) program, in response to Program Solicitation NSF 15-592. The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. To achieve this purpose, the project will examine the validity of a new technology-based formative assessment tool for classroom argumentation--"Diagnosing the Argumentation Levels of Groups" (DiALoG)--for which psychometric validation work has been conducted in a laboratory setting. The DiALoG assessment tool allows teachers to document classroom talk and display scores across multiple dimensions--both intrapersonal and interpersonal--for formative assessment purposes. The project will work with 6th-8th grade science teachers to monitor and support argumentation through real-time formative assessment data generated by the DiALoG instrument. DiALoG will be used in conjunction with "Amplify Science", a Lawrence Hall of Science-developed curriculum that incorporates the science practice of engaging in argument from evidence, and a suite of newly developed Responsive Mini-Lessons (RMLs), which consist of 20-30 minute instructional strategies designed to assist teachers to provide feedback to students' thinking and follow-up to argumentation episodes that the DiALoG tool identifies in need of further support. The study will allow the refinement and expansion of DiALoG and evaluation of its impact on teacher pedagogical content knowledge and formative assessment practices in widespread classroom use.

The project will address two specific research questions: (1) How can DiALoG be refined to provide a formative assessment tool for oral argumentation that is reliable, practical, and useful in middle school classrooms?; and (2) How does the use of DiALoG affect teacher formative assessment practices around evidence-based argumentation, when implementing science units designed to support oral argumentation? In order to answer these questions, the project will conduct a randomized control trial with 100 teachers: 50 will teach argumentation-focused curriculum with DiALoG, 50 will teach the same curriculum without DiALoG. Both control and treatment teachers will receive all digital and physical materials needed to teach three Amplify Science curriculum units. Treatment teachers will be provided also with the most recent version of DiALoG, including the linked RMLs, as well as support materials for using DiALoG with the Amplify curriculum. A subgroup of focus teachers (5 from the treatment group, and 5 from the control group) will be the subject of additional data collection and analysis. Three focus lessons, in which students are engaging in small-group or whole-class oral argumentation, will be selected from each of the three Amplify Science curricular units. Teacher measures for the randomized control trial will include validated instruments, such as (a) a pre- and post-assessment of teacher pedagogical content knowledge; (b) post-lesson and post-unit surveys in which teachers will self-report on their formative assessment practices; and (c) video recordings of selected lessons in the focus classrooms. In order to observe potential differences in formative assessment practices between treatment and control, protocols will be used to analyze the video recordings of focus classrooms, including (a) Reformed Teaching Observation Protocol; (b) Assessment of Scientific Argumentation inside the Classroom; and (c) Formative Assessment for Teachers and Students. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

CAREER: Making Science Visible: Using Visualization Technology to Support Linguistically Diverse Middle School Students' Learning in Physical and Life Sciences

Award Number: 
1552114
Funding Period: 
Wed, 06/01/2016 to Mon, 05/31/2021
Full Description: 

The growing diversity in public schools requires science educators to address the specific needs of English language learners (ELLs), students who speak a language other than English at home. Although ELLs are the fastest-growing demographic group in classrooms, many are historically underserved in mainstream science classrooms, particularly those from underrepresented minority groups. The significant increase of ELLs at public schools poses a challenge to science teachers in linguistically diverse classrooms as they try to support and engage all students in learning science. The proposed project will respond to this urgent need by investigating the potential benefits of interactive, dynamic visualization technologies, including simulations, animations, and visual models, in supporting science learning for all middle school students, including ELLs. This project will also identify design principles for developing such technology, develop additional ways to support student learning, and provide new guidelines for effective science teachers' professional development that can assist them to better serve students from diverse language backgrounds. The project has the potential to transform traditional science instruction for all students, including underserved ELLs, and to broaden their participation in science.

In collaboration with eighth grade science teachers from two low-income middle schools in North Carolina, the project will focus on three objectives: (1) develop, test, and refine four open-source, web-based inquiry units featuring dynamic visualizations on energy and matter concepts in physical and life sciences, aligned with the Next Generation Science Standards (NGSS); (2) investigate how dynamic visualizations can engage eighth-grade ELLs and native-English-speaking students in science practices and improve their understanding of energy and matter concepts; and (3) investigate which scaffolding approaches can help maximize ELLs' learning with visualizations. Research questions include: (1) Which kinds of dynamic visualizations (simulations, animations, visual models) lead to the best learning outcomes for all students within the four instructional science units?; (2) Do ELLs benefit more from visualizations (or particular kinds of visualizations) than do native-English-speaking students?; and (3) What kinds of additional scaffolding activities (e.g., critiquing arguments vs. generating arguments) are needed by ELLs in order to achieve the greatest benefit? The project will use design-based research and mixed-methods approaches to accomplish its research objectives and address these questions. Furthermore, it will help science teachers develop effective strategies to support students' learning with visualizations. Products from this project, including four NGSS-aligned web-based inquiry units, the visualizations created for the project, professional development materials, and scaffolding approaches for teachers to use with ELLs, will be freely available through a project website and multiple professional development networks. The PI will collaborate with an advisory board of experts to develop the four instructional units, visualizations, and scaffolds, as well as with the participating teachers to refine these materials in an iterative fashion. Evaluation of the materials and workshops will be provided each year by the advisory board members, and their feedback will be used to improve design and implementation for the next year. The advisory board will also provide summative evaluation of student learning outcomes and will assess the success of the teachers' professional development workshops.

Exploring Ways to Transform Teaching Practices to Increase Native Hawaiian Students' Interest in STEM

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

Lead Organization(s): 
Award Number: 
1551502
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This research is needed since Native Hawaiians are often stereotyped as poor learners; the available STEM workforce falls short of meeting the demands of STEM employers in the state; and as the largest group of public school enrollees, data show a greater decline in percent of students meeting or exceeding proficiency in science at higher grade levels. This project will address these issues by transforming the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

The professional development model for teachers will be situated in the larger national and global contexts of an increasingly technology oriented, urbanized society with associated marginalization of indigenous people whose traditional ecological knowledge and indigenous languages are often overlooked. Guided by the cultural mental model theory and a mixed methods approach, data will be collected through document analysis, surveys, individual and focus group interviews, and pre-post assessments. This approach will capture initials findings about the influence of the professional development model on teaching and learning in science. The end products from this project will be an improved professional development model that is more sensitive to contexts that promote learning by Native Hawaiian students. It will also produce a survey instrument to assess student interest and engagement in science learning whose teachers will have participated in the professional development model being explored. Both outcomes will potentially be instrumental in changing the way approximately 2000 Native Hawaiian students learn about and become more interested in STEM fields through their natural world.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards

This project will conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level which is aligned with the Next Generation Science Standards (NGSS).

Award Number: 
1551143
Funding Period: 
Tue, 09/01/2015 to Thu, 08/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards is an exploratory project to conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level. Research and Curriculum Development team consisting of master elementary science teachers, university professors including science, engineering, and science teacher education faculty, and a science education post doc or graduate student will engage in developing the Next Generation Science Standards (NGSS) aligned curricula integrating science, engineering, and language arts, and publishing STEM education research. The importance of this project will be the development of curricula integrating science, engineering, and language arts at the elementary level. Lesson plans or teaching activities in the integrated curricula will be written in practitioner article format. In the NGSS the engineering design is raised to the same level as scientific inquiry and included as a vital element of science education. This integrated approach aims to provide three-dimensional learning experience as specified in the NGSS to elementary students while meaningfully integrating engineering, science, reading, and writing through real life engineering design problems. The NGSS aligned curricula that will be developed in this project can also be used in other states that adopted the NGSS.

An Integrated curriculum for grades 1-2 will be developed in year 1. In year 2, the project will develop a curriculum for grades 3-5. Each year, the project will develop and field-test a new curriculum, and provide professional development organized around the integrated curriculum to 20 elementary teachers at the Clark County School District in Las Vegas, Nevada.

PlantingScience: Digging Deeper Together - A Model for Collaborative Teacher/Scientist Professional Development

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning.

Lead Organization(s): 
Award Number: 
1502892
Funding Period: 
Thu, 10/01/2015 to Mon, 09/30/2019
Full Description: 

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning. The project will also develop and test the outcomes of a summer institute for teachers and a website that will support the online mentoring of students and the professional development of teachers. Outcomes of the project will include the development of a facilitation guide for the teacher professional development model, a website to support student mentoring and teacher professional development, a series of resources for teachers and scientists to use in working with students, and empirical evidence of the success of the new professional development model.

This full research and development project will employ a pre-test/post-test control group design to test the efficacy of a professional development model for high school biology teachers. The professional development model is grounded in a theory of action based on the premise that when teachers are engaged with scientists and students in a technology-enabled learning community, students will demonstrate higher levels of achievement than those using more traditional instructional materials and methodologies. The means of post-intervention outcome measures will be compared across treatment and comparison groups in a cluster-randomized trial where teachers will be randomly assigned to treatment groups. The study will recruit a nation-wide sample to ensure that participants represent a wide array of geographic and demographic contexts, with preference given to Title 1 schools. The research questions are: a) To what extent does participation in the Digging Deeper community of teachers and scientists affect teacher knowledge and practices? b) To what extent does participation in the Digging Deeper community of teachers and scientists affect scientists? quality of mentorship and teaching? And c) To what extent does student use of the online program and participation in the learning community with scientist mentors affect student learning? Instruments will be developed or adapted to measure relevant student and teacher knowledge, student motivation, and teacher practices. Computer-mediated discourse analysis will be used over the course of the study to track online interactions among students, teachers, and science mentors.

Pages

Subscribe to Teacher Attitudes/Beliefs