Teacher Attitudes/Beliefs

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Donovan)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503342
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

PBS NewsHour STEM Student Reporting Labs: Broad Expansion of Youth Journalism to Support Increased STEM Literacy Among Underserved Student Populations and Their Communities

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.

Award Number: 
1503315
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.


Project Videos

2019 STEM for All Video Showcase

Title: How Video Storytelling Reengages Teenagers in STEM Learning

Presenter(s): Leah Clapman & William Swift

2018 STEM for All Video Showcase

Title: PBS NewsHour's STEM SRL Transforms Classrooms into Newsrooms

Presenter(s): Leah Clapman & William Swift

2017 STEM for All Video Showcase

Title: PBS is Building the Next Generation of STEM Communicators

Presenter(s): Leah Clapman, John Fraser, Su-Jen Roberts, & Bill Swift


Science Teachers Learning from Lesson Analysis (STeLLA): High School Biology

This project will develop and test a biology teacher professional model that employs analysis of videotaped lessons to promote increased biology content knowledge and pedagogical content knowledge among practicing biology teachers. The content of the professional development activities will focus on the crosscutting concepts of stability and change that link core ideas in three areas of biology: cell biology, heredity, and evolution.

Lead Organization(s): 
Award Number: 
1503280
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project will develop and test a biology teacher professional model that employs analysis of videotaped lessons to promote increased biology content knowledge and pedagogical content knowledge among practicing biology teachers. The content of the professional development activities will focus on the crosscutting concepts of stability and change that link core ideas in three areas of biology: cell biology, heredity, and evolution. These are content areas that have been shown to be difficult for students to learn, and difficult for teachers to teach. The professional development model will include: a) a summer institute where teachers gain new knowledge and skills in biology and learn to analyze videotaped lessons; b) opportunities to teach project-developed lessons during the academic year; and c) study group sessions during the academic year where participating teachers analyze videoclips of their own teaching.

The project will design, develop, and test a teacher professional development model that is based on a previously developed approach that has been shown to be effective among elementary school teachers. It is hypothesized that the newly developed program will have a positive impact on the science achievement of high school students, that it will improve teacher science content knowledge and classroom practice, and that the effects on student outcomes will be equitable across student demographic variables. To test thee hypotheses, the project will employ a quasi-experimental research approach in which teachers will serve as their own comparison groups in a cohort control design. Hierarchical linear modeling will be used to differentiate the effects of variances in teacher content knowledge and pedagogical content knowledge, student demographic variables, and school factors. It is anticipated that the project will find evidence that the proposed approach to biology teacher professional development has the potential to close the achievement gaps among student populations.

Playing with the Data: Developing Digital Supports for Middle School Science Teachers using Game-based Formative Assessment

This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games.

Award Number: 
1503255
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games. The project is a collaboration between researchers at Education Development Center Inc.'s Center for Children and Technology (EDC|CCT) and the assessment and game development teams at GlassLab. The research and development teams will engage in a three-year partnership with 60 middle-grade science teachers working in diverse school settings in different parts of the country. The aim of the project is to refine an online formative assessment platform that utilizes data from a video game designed to teach argumentation at the middle school level. It provides rigorous research on the design features of data tools and associated materials available to teachers to inform their ongoing instruction (i.e., formative assessment tools) when using game-based platforms.

Dissemination of the results of this project will include practical, evidence-based suggestions for supporting middle school science teachers' use of digital games for assessment, and for the design and implementation of data dashboards. Key audiences include educational game designers, game-based assessment developers, formative assessment experts, and leaders in middle grade science teaching and learning.

Zoombinis: The Full Development Implementation Research Study of a Computational Thinking Game for Upper Elementary and Middle School Learners

This project leverages an existing game by embedding tools for studying patterns of students' decision-making and problem solving in the environment. This allows researchers to understand how students learn about computational thinking within a tool that bridges informal and formal learning settings to engage a wide variety of students. The project will also develop tools and resources for classroom teachers.

Lead Organization(s): 
Award Number: 
1502882
Funding Period: 
Wed, 07/15/2015 to Sat, 06/30/2018
Full Description: 

The Logical Journey of the Zoombinis implementation research study examines the development of computational thinking for upper elementary and middle grades students. Computational thinking is the set of ideas and practices considered vital for computer science skills and has been attracting increased attention over the past several years in K-12 education. This project leverages an existing game by embedding tools for studying patterns of students' decision-making and problem solving in the environment. This allows researchers to understand how students learn about computational thinking within a tool that bridges informal and formal learning settings to engage a wide variety of students. The project will also develop tools and resources for classroom teachers. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The research examines three questions. First, what strategies do players develop during Zoombinis gameplay that may provide evidence of implicit computational thinking? Second, how can teachers leverage implicit knowledge of computational thinking developed in Zoombinis to improve formal (explicit) learning? Third, how can a large-scale commercial game be used for broad and equitable improvement of computational thinking? The research uses and develops educational data mining techniques to assess students' learning in conjunction with pre-post computational thinking assessments (external to the game), teacher interviews, classroom observations, and case studies of classroom use. The goal is to understand both students' learning of computational thinking and how to bridge the formal and informal learning via classroom implementation of the Zoombinis game.

Learning Labs: Using Videos, Exemplary STEM Instruction and Online Teacher Collaboration to Enhance K-2 Mathematics and Science Practice and Classroom Discourse

This project will develop and study two sets of instructional materials for K-2 teacher professional development in mathematics and science that are aligned with the CCSS and NGSS. Teachers will be able to review the materials online, watch video of exemplary teaching practice, and then upload their own examples and students' work to be critiqued by other teachers enrolled in professional learning communities as well as expert coaches.

Lead Organization(s): 
Award Number: 
1417757
Funding Period: 
Wed, 04/15/2015 to Sat, 03/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The investigators of this study propose to develop and study two sets of instructional materials for K-2 teacher professional development in mathematics and science that are aligned with the Common Core State Standards in Mathematics (CCSS) and the Next Generation Science Standards (NGSS). They will develop two modules in each subject area and an introductory module that prefaces and integrates the science and mathematics materials. Teachers will be able to review the materials online, watch video of exemplary teaching practice, and then upload their own examples and students' work to be critiqued by other teachers enrolled in professional learning communities as well as expert coaches. New instructional materials aligned with the standards are needed to assist teachers in meeting the challenging instructional practices recommended. To date, scant few resources of this type exist and, given many school districts have limited resources, more cost-effective forms of development such as this must be found. A particular strength of this project is that teachers will be able to engage in the courses online, on an ongoing basis and integrate what they have learned into their daily teaching practice.

The investigators propose a program of design research to develop and improve the modules. The central hypothesis is a test of the Teaching Channel model--that the modules and professional learning communities result in significant changes in the quality of instructional practice. Text analytics will be performed on the online discussion to detect changes in group discourse over time. Changes in instructional quality and vision will be measured by observing the videos posted by teachers. Pre-post tests of student work will be performed. The findings of the research will be disseminated through conference presentations, publications, and the Teaching Channel website.

Developing Teachers' Capacity to Promote Argumentation in Secondary Science

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. 

Award Number: 
1503511
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. The program includes strategies for organizing science activities to create contexts where students have something to argue about and teaching practices that promote sustained, productive argumentation among students. Results will document what aspects of these new practices teachers find easier and more difficult to implement, and how challenges are influenced by the urban schooling contexts in which project teachers work. The project will also further our understanding of how site-based professional development can be structured to support teacher learning and improvement.

The project is a longitudinal study of a cohort of 30 secondary science teachers from an urban school district in California. The professional development (PD) program will be organized around intensive summer institutes followed by 2 school-based lesson study cycles each year, facilitated by trained coaches. The PD work will be carried out over three years. All PD sessions will be recorded for interaction analysis to identify variations in coaching and teacher participation and the influences of such variation on teacher learning. Repeated measures of teachers' conceptions of argumentation will be given over 3 years as a measure of teacher learning. An observation protocol will be developed and used to measure teacher talk and its change over time. A sub-sample of teachers' classrooms will be video recorded to produce a longitudinal record for interaction analyses to link teacher talk to patterns of student argumentation. The third year of the project will add measures of student learning and link them to variations in teacher practice. The final year of the project will produce retrospective analyses that link pathways in teacher learning to features of the PD program and teachers' participation. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-Rich Investigations for NGSS Teaching (SPRINT)

This is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning.

Lead Organization(s): 
Award Number: 
1503153
Funding Period: 
Mon, 06/01/2015 to Wed, 05/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.

SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.


Project Videos

2019 STEM for All Video Showcase

Title: Immersed in Phenomena: Helping Teachers Transition to NGSS

Presenter(s): Julie Yu, Sara Heredia, & Jessica Parker


Fostering STEM Trajectories: Bridging ECE Research, Practice, and Policy

This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM.  A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417878
Funding Period: 
Mon, 06/15/2015 to Tue, 05/31/2016
Full Description: 

Early childhood education is at the forefront of the minds of parents, teachers, policymakers as well as the general public. A strong early childhood foundation is critical for lifelong learning. The National Science Foundation has made a number of early childhood grants in science, technology, engineering and mathematics (STEM) over the years and the knowledge generated from this work has benefitted researchers. Early childhood teachers and administrators, however, have little awareness of this knowledge since there is little research that is translated and disseminated into practice, according to the National Research Council. In addition, policies for both STEM and early childhood education has shifted in the last decade. 

The Joan Ganz Cooney Center and the New America Foundation are working together to highlight early childhood STEM education initiatives. Specifically, the PIs will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. The papers will be used as anchor topics to organize a forum with a broad range of stakeholders including policymakers as well as early childhood researchers and practitioners. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report. The synthesis report will be widely disseminated by the Joan Ganz Cooney Center and the New America Foundation.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed project.

Design Technology and Engineering Education for English Learner Students: Project DTEEL

One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills. 

Lead Organization(s): 
Award Number: 
1503428
Funding Period: 
Mon, 06/01/2015 to Thu, 05/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills. 

The project's cross-disciplinary approach is grounded in both inquiry-based science education research and bilingual cognition research. These complementary foci bridge research areas to highlight how engineering experiences for students can capitalize on bilingual students' experiences as problem solvers. The project will develop teachers' ability and instructional efficacy for both STEM and bilingual student instruction. The project adapts a previously developed curriculum for engineering education by adding resources and tools to support bilingual students. The research design primarily measures teacher-level phenomenon such as implementation of instructional strategies, STEM self-efficacy and ability to address the academic development of bilingual students through engineering design activities. Data collected include classroom observations, teacher surveys, focus groups, and teacher interviews. Student assessments will be piloted in the final year of the project.

Pages

Subscribe to Teacher Attitudes/Beliefs