Teacher Attitudes/Beliefs

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Wilson)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100903
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Mawhinney)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100833
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Schwartz)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100895
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: McCulloch)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100947
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Developing the Pedagogical Skills and Science Expertise of Teachers in Underserved Rural Settings

The project will develop and research an innovative model for rural science teacher professional development via technology-mediated lesson study (TMLS). This approach supports translating professional learning into classroom practice by developing a technology-based, social support system among rural teachers.

Lead Organization(s): 
Award Number: 
2101383
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Rural science teachers are often isolated and have few opportunities for meaningful collaboration with fellow teachers, an important source of professional learning. The project will develop and research an innovative model for rural science teacher professional development via technology-mediated lesson study (TMLS). This approach supports translating professional learning into classroom practice by developing a technology-based, social support system among rural teachers. The project will host summer workshops for high school biology and chemistry teachers from four rural Utah regions to learn about 3D science teaching. (3D science teaching incorporates core ideas science disciplines, science research practices, and concepts cutting across disciplines to help students meet performance expectations by engaging with authentic science phenomena.) In the workshops, participants will collaborate with the project team and teachers of the same subject from the same region of the state to co-design 3D science lessons that align with state and national education standards. Building on relationships developed during the workshops, the regional teacher teams will engage in a novel form of professional learning: technology-mediated lesson study. (Lesson study is an instructional inquiry model where teachers work face-to-face in small collaborative groups to craft, deliver, observe, and refine teaching practice.) This project will develop capacity for science teaching for 88 rural science teachers in four regions of the state, who will reach approximately 10,000 rural Utah students each year. Many of the students are members of the sovereign Ute, Paiute, Goshute, Navajo (Diné), and Shoshone Nations. The science lesson plans participants design will be made available to all Utah teachers, and shared with a national audience through a website that shares peer-reviewed science lesson plans. Project research and resources will be further disseminated through conference presentations and publications in peer-reviewed and practitioner journals.

The project will research how TMLS supports teachers in the process of translating professional learning into practice and investigate the impact of changing teachers’ social support network to include teachers of the same subject from other rural schools. The project will study the effects of co-design activities and TMLS cycles on teachers’ changing capacity, practice, and social support system using mixed-methods research. Changes in capacity and practice will be examined qualitatively through interviews, video observations of classroom teaching, and TMLS meetings. The effects of TMLS on teachers’ social support system will be analyzed quantitatively using social network analysis to identify individuals who act as information hubs for 3D science teaching. These teachers will be interviewed to better understand their social interactions. Using design-based implementation research, the project will iteratively improve the professional learning experience collaboratively with the science teacher leaders who participate in the project.

Supporting Teacher Customizations of Curriculum Materials for Equitable Student Sensemaking in Secondary Science (Collaborative Researcher: Reiser)

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2101377
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

This project is developing and researching tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. Sensemaking involves students building and using science ideas to address questions and problems they identify, rather than solely learning about the science others have done. Despite it being a central goal of recent national policy documents, such meaningful engagement with science knowledge building remains elusive in many classrooms. Students from non-dominant communities frequently do not see themselves as “science people” because their ways of knowing and experiences are often not valued in science classrooms. Professional learning grounded in teachers’ use of innovative high quality curriculum materials can help teachers learn to teach in new ways. Yet teachers need guidance to customize curriculum materials to fit their own local contexts and leverage students’ ideas and experiences while maintaining the goals of recent policy documents. This project is researching and developing customization tools to support teachers in their principled use and adaptation of materials for their classrooms. These customization tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking. During the project, 74 teachers from diverse schools will participate in professional learning using these customization tools. After testing, the customization tools and illustrative cases will be disseminated broadly to support teachers enacting any science curriculum in leveraging the ideas and experiences that students bring into the classroom. In addition, the research results in the form of design principles will inform future design of curriculum materials and professional learning resources for science.

A key element in science education reform efforts includes shifting the epistemic and power structures in the classroom so that teachers and students work together to build knowledge. Research shows that shifts in science teaching are challenging for teachers. Researchers and practitioners have collaborated to develop curriculum materials that begin to support teachers in this work. But teachers need to interpret these materials and customize the tasks and strategies for their own context as they work with their own students. Curriculum enactment is not prescriptive, but rather a “participatory relationship” between the teacher, curriculum materials, students and context, where teachers interpret the materials and the goals of the reform, and customize them to adapt the tasks and activity structures to meet the needs and leverage the resources of their students. The field needs to better understand how teachers learn from and navigate this participatory relationship and what supports can aid in this work. This project will include design-based research examining teachers’ customization processes and the development of tools to support teachers in adapting curriculum materials for their specific school context to facilitate equitable science sensemaking for all students, where all students engage in ambitious science knowledge building. The major components of the research program will include: (1) Empirical study of teachers’ customization processes; (2) Theoretical model of teacher thinking and learning that underlies customization of curriculum materials; (3) Tools to support principled customization consistent with the goals of the reform; and (4) Empirical study of how tools influence teachers’ customization processes. The project is addressing the urgent need for scalable support for teacher learning for recent shifts in science education in relation to both a vision of figuring out and equity.

Supporting Teacher Customizations of Curriculum Materials for Equitable Student Sensemaking in Secondary Science (Collaborative Researcher: McNeill)

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2101384
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

This project is developing and researching tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. Sensemaking involves students building and using science ideas to address questions and problems they identify, rather than solely learning about the science others have done. Despite it being a central goal of recent national policy documents, such meaningful engagement with science knowledge building remains elusive in many classrooms. Students from non-dominant communities frequently do not see themselves as “science people” because their ways of knowing and experiences are often not valued in science classrooms. Professional learning grounded in teachers’ use of innovative high quality curriculum materials can help teachers learn to teach in new ways. Yet teachers need guidance to customize curriculum materials to fit their own local contexts and leverage students’ ideas and experiences while maintaining the goals of recent policy documents. This project is researching and developing customization tools to support teachers in their principled use and adaptation of materials for their classrooms. These customization tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking. During the project, 74 teachers from diverse schools will participate in professional learning using these customization tools. After testing, the customization tools and illustrative cases will be disseminated broadly to support teachers enacting any science curriculum in leveraging the ideas and experiences that students bring into the classroom. In addition, the research results in the form of design principles will inform future design of curriculum materials and professional learning resources for science.

A key element in science education reform efforts includes shifting the epistemic and power structures in the classroom so that teachers and students work together to build knowledge. Research shows that shifts in science teaching are challenging for teachers. Researchers and practitioners have collaborated to develop curriculum materials that begin to support teachers in this work. But teachers need to interpret these materials and customize the tasks and strategies for their own context as they work with their own students. Curriculum enactment is not prescriptive, but rather a “participatory relationship” between the teacher, curriculum materials, students and context, where teachers interpret the materials and the goals of the reform, and customize them to adapt the tasks and activity structures to meet the needs and leverage the resources of their students. The field needs to better understand how teachers learn from and navigate this participatory relationship and what supports can aid in this work. This project will include design-based research examining teachers’ customization processes and the development of tools to support teachers in adapting curriculum materials for their specific school context to facilitate equitable science sensemaking for all students, where all students engage in ambitious science knowledge building. The major components of the research program will include: (1) Empirical study of teachers’ customization processes; (2) Theoretical model of teacher thinking and learning that underlies customization of curriculum materials; (3) Tools to support principled customization consistent with the goals of the reform; and (4) Empirical study of how tools influence teachers’ customization processes. The project is addressing the urgent need for scalable support for teacher learning for recent shifts in science education in relation to both a vision of figuring out and equity.

Supporting High School Students and Teachers with a Digital, Localizable, Climate Education Experience

This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions.

Lead Organization(s): 
Award Number: 
2100808
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Teachers regularly adapt curriculum materials to localize for their school or community context, yet curriculum materials are not always created to support this localization. Developing materials that are intentionally designed for localization has potential to support rich science learning across different contexts, especially for a topic like climate change where global change can have varied local effects. This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. It will develop and test a design process bringing together national designers and teachers across the country. Teachers will be supported through professional learning to adapt from the base unit to create a local learning experience for their students. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions. The unit will be fully digital with rich visual experiences, simulations, and computer models that incorporate real-time data and the addition of localized data sets. These data-based learning experiences will support students in reasoning with data to ask and answer questions about phenomena. Research will study the unit development and localization process, the supports appropriate for teachers and students, and the impact on classroom practice.

The project will adopt an iterative design process to create a Storyline base unit, aligned to Next Generation Science Standards, for localization, piloting, and an implementation study with 40 teachers. To support teacher learning, the project adopts the STeLLA teacher professional learning model. To support student learning, the project addresses climate change content knowledge with a focus on socioscientific issues and students’ sense of agency with environmental science. The project will research how the educative features in the unit and the professional development impact teachers’ practice, including their content knowledge, comfort for teaching a socioscientific issue, and their ability to productively localize materials from a base unit. The study uses a cohort-control quasi-experimental design to examine the impact of the unit and professional learning experience on dimensions of students' sense of agency with environmental science. The study will also include exploratory analyses to examine whether all students benefit from the unit. It uses a pre-post design to examine impacts on teacher knowledge and practice.

Supporting Instructional Decision Making: The Potential of Automatically Scored Three-Dimensional Assessment System (Collaborative Research: Zhai)

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

Lead Organization(s): 
Award Number: 
2101104
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 
This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems. Led by collaborators from University of Georgia, Michigan State University, University of Illinois at Chicago, and WestEd, the project team will develop computer scoring algorithms, a suite of AutoRs, and an array of pedagogical content knowledge supports (PCKSs). These products will assist middle school science teachers in the use of 3D assessments, making informative instructional changes, and improve students’ 3D learning. The project will generate knowledge about teachers’ uses of 3D assessments and examine the potential of automatically scored 3D assessments.
 
The project will achieve the research goals using a mixed-methods design in three phases. Phase I: Develop AutoRs. Machine scoring models for the 3D assessment tasks will be developed using existing data. To support teachers’ interpretation and use of automatic scores, the project team will develop AutoRs and examine how teachers make use of these initial reports. Based on observations and feedback from teachers, AutoRs will be refined using an iterative procedure so that teachers can use them with more efficiency and productivity. Phase II: Develop and test PCKSs. Findings from Phase I, the literature, and interviews with experienced teachers will be employed to develop PCKSs. The project will provide professional learning with teachers on how to use the AutoRs and PCKSs. The project will research how teachers use AutoRs and PCKSs to make instructional decisions. The findings will be used to refine the PCKSs. Phase III: Classroom implementation. In this phase a study will be conducted with a new group of teachers to explore the effectiveness and usability of AutoRs and PCKSs in terms of supporting teachers’ instructional decisions and students’ 3D learning. This project will create knowledge about and formulate a theory of how teachers interpret and attend to students’ performance on 3D assessments, providing critical information on how to support teachers’ responsive instructional decision making. The collaborative team will widely disseminate various products, such as 3D assessment scoring algorithms, AutoRs, PCKSs, and the corresponding professional development programs, and publications to facilitate 3D instruction and learning.

Supporting Teachers to Teach Mathematics through Problem Posing

This project aims to support teachers to engage their students in mathematical problem posing (problem-posing-based learning, or P-PBL). P-PBL is a powerful approach to the teaching and learning of mathematics, and provides students with opportunities to engage in authentic mathematical practices.

Lead Organization(s): 
Award Number: 
2101552
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

This project aims to support teachers to engage their students in mathematical problem posing (problem-posing-based learning, or P-PBL). P-PBL is a powerful approach to the teaching and learning of mathematics, and provides students with opportunities to engage in authentic mathematical practices. For example, conjecturing in mathematics, a form of problem posing, often plays an important role in solving complex problems, and problem posing is an important component of mathematical modeling. Yet despite its importance, widely used curriculum materials fail to incorporate P-PBL in substantial and consistent ways, leaving teachers with few resources to enact this process. This project will develop problem-posing lessons and illustrative cases of teachers implementing P-PBL that will not only support teachers to develop a vision of what P-PBL looks like and how to implement it in their own classrooms, but will also serve as rich resources for professional development (PD) providers. This project will generate valuable findings about teaching using problem posing for district administrators, mathematics teachers, educators, and researchers as well as curriculum developers and policy makers. The team will develop and pilot a set of 20−30 research-based P-PBL cases that provide critical details for the implementation of P-PBL and reveal “lessons learned” from the development process.

The project promises broader impact on the field of mathematics education as the first goal is to support teachers to teach mathematics through engaging their students in mathematical problem posing. By guiding students to construct and investigate their own problems, P-PBL both helps to create mathematical learning opportunities and develops students’ mathematical agency and positive mathematical identities. A networked improvement community of teachers and researchers will integrate problem posing into daily mathematics instruction and continuously improve the quality of P-PBL through iterative task and lesson design. The intellectual merit of this project is its contribution of new and important insights about teaching mathematics through problem posing. This will be realized through the second project goal which is to longitudinally investigate the promise of supporting teachers to teach with P-PBL for enhancing teachers’ instructional practice and students’ learning. A quasi-experimental design coupled with design-based research methodology and improvement science will be used to understand how, when, and why P-PBL works in practice. Specifically, we plan to follow a sample of 36 teachers and their approximately 3,600 students from six middle schools for multiple years to longitudinally explore the promise of P-PBL for developing teachers’ beliefs about problem posing, their beliefs about P-PBL, and their actual instructional practice. We will also investigate students’ learning as measured by problem-posing performance, problem-solving performance, and mathematics disposition. The findings of the project will add not only to the field’s understanding of the promise of supporting teachers to integrate P-PBL into their mathematics instruction, but also to its understanding of the challenges that teachers face when engaging in a networked improvement community that is focused on improving tasks and lessons by integrating P-PBL.

Pages

Subscribe to Teacher Attitudes/Beliefs