Statistics

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Wilson)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100903
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Mawhinney)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100833
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Schwartz)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100895
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: McCulloch)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100947
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

DataX: Exploring Justice-Oriented Data Science with Secondary School Students

This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.

Award Number: 
2101413
Funding Period: 
Thu, 07/01/2021 to Fri, 06/30/2023
Full Description: 

Understanding data is critical for informed citizens. Data science is a growing and emerging field that can incorporate statistics, mathematics, and computer science to develop disciplinary knowledge and address societal challenges. This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This project includes science and social studies teachers in the design of the resources and in testing them in secondary school classrooms. Research and development in data science education is needed to understand how students can learn more about the use of data in meaningful and authentic ways. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.

During a two-year project period, we aim to iteratively advance three design components of the DataX program: (a) a justice-oriented data science curriculum integrated in secondary science and social studies; (b) a web-based learning platform that extends the Common Online Data Analysis Platform (CODAP) to support collaboration and sophisticated data practices; and (c) pedagogical practices that involve learners to work collectively as community. The guiding research question is: What scaffolds and resources are necessary to support the co-development of data, disciplinary, and critical literacies in secondary classrooms? To address this, the project will use participatory design research with science and social studies teachers to develop and test the curriculum, the learning platform, and the pedagogical practices. The data collected will include qualitative sources gathered from participatory design workshops and classrooms, as well as quantitative data from questionnaires and system logs. Using the data, we examine students' data science skills, data dispositions, and social participation in collaborative data investigations.

Improving Professional Development in Mathematics by Understanding the Mechanisms that Translate Teacher Learning into Student Learning

This project explores the mechanisms by which teachers translate what they learn from professional development into their teaching practice. The goal of this project is to study how the knowledge and skills teachers acquire during professional development (PD) translate into more conceptually oriented mathematics teaching and, in turn, into increased student learning.

Lead Organization(s): 
Award Number: 
2100617
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

A great deal is known about the effects of mathematics teacher professional development on teachers' mathematical knowledge for teaching. While some professional development programs show meaningful changes in teacher knowledge, these changes do not always translate into changes in teacher practice. This project explores the mechanisms by which teachers translate what they learn from professional development into their teaching practice. The goal of this project is to study how the knowledge and skills teachers acquire during professional development (PD) translate into more conceptually oriented mathematics teaching and, in turn, into increased student learning. The project builds on a promising video-based PD that engages teachers in analyzing videos of classroom mathematics teaching. Previous research indicates that teachers who can analyze teaching by focusing on the nature of the mathematical learning opportunities experienced by students often teach more effectively. The researchers aim to better understand the path teachers follow as they develop this professional competency and translate it into more ambitious teaching that supports richer student learning. The lack of understanding of how a PD program can reach students is a significant barrier to improving the effectiveness of PD. To build this understanding, the researchers aim to test and refine an implementation theory that specifies the obstacles teachers face as they apply their learning to their classroom teaching and the contextual supports that help teachers surmount these obstacles. Lessons learned from understanding the factors that impact the effects of PD will help educators design PD programs that maximize the translation of teacher learning into student learning.

The project will recruit and support a cohort of teachers, grades 4–5 (n=40) and grades 6–7 (n=40) for three years to trace growth in teacher learning, changes in teaching practices, and increases in student learning. The PD will be provided throughout the year for three consecutive years. The researchers will focus on two mathematics topics with a third topic assessed to measure transfer effects. Several cycles of lesson analysis will occur each year, with small grade-alike curriculum-alike groups assisted by trained coaches to help teachers translate their growing analysis skills into planning, implementing, and reflecting on their own lessons. Additional days will be allocated each year to assist the larger groups of teachers in developing pedagogical content knowledge for analyzing teaching. The research focuses on the following questions: 1) What are the relationships between teacher learning from PD, classroom teaching, and student learning, how do hypothesized mediating variables affect these relationships, and how do these relationships change as teachers become more competent at analyzing teaching?; and 2) How do teachers describe the obstacles and supports they believe affect their learning and teaching, and how do these obstacles and supports deepen and broaden the implementation theory? Multi-level modeling will be used to address the first question, taking into account for the nested nature of the data, in order to test a model that hypothesizes direct and indirect relationships between teacher learning and teaching practice and, in turn, teaching practice and student learning. Teachers will take assessments each year, for each mathematics topic, on the analysis of teaching skills, on the use of teaching practices, and on students’ learning. Cluster analysis will be used to explore the extent to which the relationship between learning to analyze the mathematics of a lesson, teaching quality, and student achievement may be different for different teachers based on measured characteristics. Longitudinal analysis will be used to examine the theoretical relationships among variables in the hypothesized path model. Teachers’ mathematical knowledge for teaching, lesson planning, and textbook curricular material use will be examined as possible mediating variables between teacher learning and teaching practice. To address the second research question, participants will engage in annual interviews about the factors they are obstacles to doing this work and about the supports within and outside of the PD that ameliorate these obstacles. Quantitative analyses will test the relationships between the obstacles and supports with teacher learning and classroom teaching. Through qualitative analyses, the obstacles and supports to translating professional learning into practice will be further articulated. These obstacles and supports, along with the professional development model, will be disseminated to the field.

Developing and Researching K-12 Teacher Leaders Enacting Anti-bias Mathematics Education (Collaborative Research: Yeh)

The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program.

Lead Organization(s): 
Award Number: 
2101666
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

There is increased recognition that engaging all students in learning mathematics requires an explicit focus on anti-bias mathematics teaching. Teachers, even with positive intentions, have biases, causing them to treat students differently and impacting how they distribute students’ opportunities to learn in K-12 mathematics classrooms. Research is needed to examine models of mathematics teacher professional development that explicitly addresses bias reduction. The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members. The project team will study teacher leader professional development, including the professional development model, framework, and tools, along with what teacher leaders across district contexts and grade-levels take up and use in their instructional practice.  This will potentially have wider implications for supporting more equitable mathematics teaching and leadership. Project activities, resources, and tools will be shared with the broader community of mathematics educators and researchers for use in other contexts.

The goal of this two-phase, design based research project is to iteratively design and research teacher leaders’ (TLs) participation in community-centered, job-embedded professional development and investigate their subsequent impact on classrooms, schools, and districts. The project builds on the existing Math Studio professional development model to create a Community Centered Math Studio, integrating the Anti-bias Mathematics Education Framework into the work. The project seeks to understand how the professional development model supports the development of teacher leaders' knowledge, dispositions, and practices for teaching and leading anti-bias mathematics education, and how teachers' subsequent classroom practice can cultivate students' mathematical engagement, discourse, and interests. The project will measure aspects of teacher knowledge and classroom practice by integrating existing classroom observation rubrics and STEM interest surveys to assess the impact on teacher classroom practice and student outcomes. The project will engage 12 TLs and approximately 60 additional teachers working with those TLs in two years of professional development using the Community Centered Math Studio Model to support anti-bias mathematics teaching. Data will be collected for all teachers related to their participation in the professional learning, with six teachers being followed for additional data collection and in-depth case studies. The project's outcomes will contribute to theories of how TLs build adaptive expertise for teaching and leading to reduce bias in classrooms, departments, schools, and districts. In addition, the project will contribute new and adapted research instruments on anti-bias teaching and leading. The research outcomes will add to the growing research base that describes the nature of equitable mathematics teaching in K-12 classrooms and increases access to meaningful mathematics for students, teachers, and communities.

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Lehrer)

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

Lead Organization(s): 
Award Number: 
2010207
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

There is an ongoing need to find ways to make science relevant for school students and an increasing need to support student interpretation of large data sets. This project addresses these needs by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts. Students construct and critique models that they and peers invent and, through the lens of models, develop foundational knowledge about the roles of variability and change in ecosystem functioning, as well as the roles of models and argumentation in scientific practice. The context for students' work is a set of citizen science-based investigations of changes in ecosystems in Maine conducted in twelve collaborating classrooms. The project studies how and to what extent students' use of different forms of modeling emerges from and informs how they investigate ecosystems. A parallel research effort investigates how and to what extent the development of teachers' comfort and proficiency with modeling changes students' engagement in these forms of modeling and students' understandings of ecosystems. A key contribution of the project is capitalizing on the Gulf of Maine Research Institutes's Ecosystem Investigation Network's citizen science field research to ground for middle school students the need to invent, revise, and contest models about real ecosystems. The understandings that result from the project's research provide evidence toward first, scaling the learning experiences to the network of 500+ teachers who are part of the Ecosystem Investigation Network, and, second, replication by programs nationally that aim to engage students in data-rich, field-based ecological investigations.

The investigation takes place in twelve collaborating middle-school classrooms, drawn from the network of 500+ Maine teachers trained in Maine's Ecosystem Investigation Network. Over the course of their field investigations, students engage in the construction, critique, and revision of three forms of modeling that play central roles in ecology: microcosms, system dynamics, and data modeling. Two innovations are introduced over the course of the project. The first is focused on enriching classroom supports for engaging in multiple forms of modeling. The second involves enhancing middle school teachers' learning about modeling, especially in the context of large data citizen science investigations. The study uses a mixed methods approach to explore the impact of the innovations on the experiences and understandings of both teachers and students. Instruments include teacher interviews and questionnaires, student interviews, and classroom observation. The understandings that result from the project's research will inform the design of professional development for teachers around data analysis and interpretation, and around how student understanding of modeling develops with sustained support, both of which are practices at the heart of scientific literacy.

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Peake)

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

Partner Organization(s): 
Award Number: 
2010119
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

There is an ongoing need to find ways to make science relevant for school students and an increasing need to support student interpretation of large data sets. This project addresses these needs by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts. Students construct and critique models that they and peers invent and, through the lens of models, develop foundational knowledge about the roles of variability and change in ecosystem functioning, as well as the roles of models and argumentation in scientific practice. The context for students' work is a set of citizen science-based investigations of changes in ecosystems in Maine conducted in twelve collaborating classrooms. The project studies how and to what extent students' use of different forms of modeling emerges from and informs how they investigate ecosystems. A parallel research effort investigates how and to what extent the development of teachers' comfort and proficiency with modeling changes students' engagement in these forms of modeling and students' understandings of ecosystems. A key contribution of the project is capitalizing on the Gulf of Maine Research Institutes's Ecosystem Investigation Network's citizen science field research to ground for middle school students the need to invent, revise, and contest models about real ecosystems. The understandings that result from the project's research provide evidence toward first, scaling the learning experiences to the network of 500+ teachers who are part of the Ecosystem Investigation Network, and, second, replication by programs nationally that aim to engage students in data-rich, field-based ecological investigations.

The investigation takes place in twelve collaborating middle-school classrooms, drawn from the network of 500+ Maine teachers trained in Maine's Ecosystem Investigation Network. Over the course of their field investigations, students engage in the construction, critique, and revision of three forms of modeling that play central roles in ecology: microcosms, system dynamics, and data modeling. Two innovations are introduced over the course of the project. The first is focused on enriching classroom supports for engaging in multiple forms of modeling. The second involves enhancing middle school teachers' learning about modeling, especially in the context of large data citizen science investigations. The study uses a mixed methods approach to explore the impact of the innovations on the experiences and understandings of both teachers and students. Instruments include teacher interviews and questionnaires, student interviews, and classroom observation. The understandings that result from the project's research will inform the design of professional development for teachers around data analysis and interpretation, and around how student understanding of modeling develops with sustained support, both of which are practices at the heart of scientific literacy.

Reaching Across the Hallway: An Interdisciplinary Approach to Teaching Computer Science in Rural Schools

This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.

Lead Organization(s): 
Award Number: 
2010256
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Strengthening computer science (CS) and computational thinking (CT) education is a national priority with particular attention to increasing the number of teachers prepared to deliver computer science courses. For rural schools, that collectively serve more than 10 million students, it is especially challenging. Rural schools find it difficult to recruit and retain STEM teachers that are prepared to teach computer science and computational thinking. This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project will build teachers' self-efficacy to deliver computer science concepts and practices into middle school social studies classrooms. The project is led by CodeVA (a statewide non-profit in Virginia), in partnership with TERC (a STEM-focused national research institution) and the University of South Florida College of Education, and in collaboration with six rural school districts in Virginia. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science. The professional development model will be designed and developed around meeting rural teachers, where they are, geographically, economically, and culturally. The model will also be sustainable and will work within the resource constraints of the rural school district. The model will also be built on strategies that will broadly spread CS education while building rural capacity.

The project will use a mixed-methods research approach to understand the model's potential to build capacity for teaching CS in rural schools. The research design is broken down into four distinct phases; planning/development prototyping, piloting and initial dissemination, an efficacy study, and analysis, and dissemination. The project will recruit 45 teacher-leaders and one district-level instructional coach, 6th and 7th-grade teachers, and serve over 1900 6th and 7th-grade students. Participants will be recruited from the rural Virginia school districts of Buchanan, Russell, Charlotte, Halifax, and Northampton. The research question for phase 1 is what is each district's existing practice around computer science education (if any) and social studies education? Phases 2, 3 and 4 research will examine the effectiveness of professional development on teacher leadership and the CS curricular integration. Phase 4 research will examine teacher efficacy to implement the professional development independently, enabling district teachers to integrate CS into their social studies classes. Teacher data sources for each phase include interviews with administrators and teachers, teacher readiness surveys, observations, an examination of artifacts, and CS/CT content interviews. Student data will consist of classroom observation and student attitude surveys. Quantitative and qualitative data will be triangulated to address each set of research questions and provide a reliability check on findings. Qualitative data, such as observations/video, and interview data will be analyzed through codes that represent expected themes and patterns related to teachers' and coaches' experiences. Project results will be communicated through presentations at conferences such as Special Interest Group on Computer Science Education, the Computer Science Teachers Association (CSTA), the National Council for Social Studies (NCSS), and the American Educational Research Association. Lesson plans will be made available on the project website, and links will be provided through publications and newsletters such as the NCSS Middle-Level Learner, NCSS Social Education, CSTA the Voice, the NSF-funded CADREK12 website and the NSF-funded STEM Video Showcase.

Pages

Subscribe to Statistics