Website

Mathematics Instruction Using Decision Science and Engineering Tools

A collaboration among educators, engineers, and mathematicians in three universities, this project is creating, implementing, and evaluating a one-year curriculum for teaching a non-calculus, fourth-year high school mathematics course and accompanied assessment instruments. The curriculum will draw on decision-making tools that include but go well beyond linear programming, to enhance student mathematical competence (particularly solving multi-step problems), improve students' attitudes toward mathematics, and promote states' adoption of the curriculum (initially NC and MI).

Project Email: 
Award Number: 
0733137
Funding Period: 
Sat, 09/15/2007 to Tue, 08/31/2010
Project Evaluator: 
Dr. Shlomo S. Sawilowsky
Full Description: 

Mathematics INstruction using Decision Science and Engineering Tools (MINDSET) is a collaboration among educators, engineers, and mathematicians at three universities to create, implement, and evaluate a new curriculum and textbook to teach standard mathematics concepts using math-based decision-making tools for a non-calculus fourth-year mathematics curriculum that several states now require and others may require in the near future. MINDSET has three goals: (1) enhancement of students’ mathematical ability, especially their ability to formulate and solve multi-step problems and interpret results; (2) improvement in students’ attitude toward mathematics, especially those from underrepresented groups, thereby motivating them to study mathematics; and (3) adoption of the curriculum initially in North Carolina and Michigan, then in other states.

Using decision-making tools from Operations Research and Industrial Engineering, we will develop a fourthyear high school curriculum in mathematics and support materials to teach standard content. Through a multi-state, multi-school district assessment, we will determine if a statistically significant improvement in students’ mathematical ability—particularly in multi-step problem solving and interpretation of results—and in motivation and attitude toward mathematics has occurred. Participating teachers will receive professional training, help to create a knowledge-based online community for support, and in-person and online technical assistance. Through extensive data collection and analysis, we will determine if this infrastructure is sustainable and sufficiently flexible to be reproduced and used by others.

Cyber-enabled Design Research to Enhance Teachers' Critical Thinking Using a Major Video Collection on Children's Mathematical Reasoning (Collaborative Research: Maher)

This project is working to create a cyber infrastructure that supports development and documentation of additional interventions for teacher professional development using the video collection, as well as other videos that might be added in the future by teacher educators or researchers, including those working in other STEM domains.

Lead Organization(s): 
Award Number: 
0822204
Funding Period: 
Mon, 09/15/2008 to Fri, 08/31/2012
Full Description: 

The Video Mosaic Collaborative features  videos of student mathematics reasoning,  tools and services to encourage learning, research and practices fostering the development of student reasoning.  The VMC is a collection and service portal intended to support three primary audiences—teacher educators and their pre-service and in-service students, practicing teachers, and researchers.  The Video Mosaic Collaborative features a 22-year longitudinal study of students’ mathematical reasoning skills as they are developed from elementary through high school grades.  The VMC has been carefully designed to leverage the insights and strategies that can be mined in this extensive and unique video collection featuring observations, interventions and interviews with students solving mathematics problems in the classroom and in informal learning settings.  A careful metadata strategy was designed by the library and education research partners in collaboration to capture elements for searching that include forms of reasoning and heuristics, math strand, math problem, NCTM standards, grade level and type of educational environment.  Students and researchers are identified and can be individually tracked through the collection.  Transcripts, student work and dissertations resulting from the videos are linked in metadata.  Tools, such as the VMCAnalytic, a video annotation and analysis tool, are provided to enable registered participants to reuse the videos for instruction, study and research by creating personal clips and combining clips to accomplish research goals such as demonstrating changes in reasoning for an individual student studying probability over several video sessions.  Unlike other video annotation tool, the VMC analytic creates  XML-based independent resources that can be kept private in the researcher’s workspace but that can also be shared.  Shared analytics will be mined for keywords, which will retrieve the video(s) being analyzed, thus adding user tagging to the metadata for the videos.  The analytic resources created are not independently searched and displayed but will display as part of the context for the videos in the collection, along with student work, dissertations, and ultimately published articles, etc., all of which form the critical context of research and study surrounding each video.

Different search strategies, guidance in using videos and opportunities to consult or collaborate with others will be provided for each primary audience of the VMC.  The latest iteration of the portal, with collections and services available for immediate use, will be presented and demonstrated at the DRK12 Principal Investigators’ meeting poster session.  Visitors to the poster will be encouraged to search the portal and to create a small analytic, in a hands-on, interactive one on one demonstration.  We believe that the VMC makes a unique and significant contribution to the efforts of teacher educators, practicing teachers and researchers to discover insights and develop innovative strategies to support the development of student reasoning in mathematics education.

Bioinformatics: Learning by Doing

This project addresses two grand challenges—cutting-edge STEM content and K-12 science assessments. Using DNA Sequencing Analysis Program (DSAP), which will be modified, high school students and teachers will learn molecular biology and modern genetics by working with authentic genomic sequences, and submit their findings for review by scientists. The objective is to develop state-of-the-art Web-based tools and resources that will make it possible for high school students to conduct authentic research in bioinformatics.

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0733255
Funding Period: 
Sat, 09/01/2007 to Tue, 08/31/2010
Project Evaluator: 
WestEd
Full Description: 

This project addresses two grand challenges—cutting-edge STEM content and K-12 science assessments. Using DNA Sequencing Analysis Program (DSAP), which will be modified, high school students and teachers will learn molecular biology and modern genetics by working with authentic genomic sequences, and submit their findings for review by scientists. The objective is to develop state-of-the-art Web-based tools and resources that will make it possible for high school students to conduct authentic research in bioinformatics.

Chemistry Facets: Formative Assessment to Improve Student Understanding in Chemistry

This project implemented a facets-of-thinking perspective to design tools and practices to improve high school chemistry teachers' formative assessment practices. Goals are to identify and develop clusters of facets related to key chemistry concepts; develop assessment items; enhance the assessment system for administering items, reporting results, and providing teacher resource materials; develop teacher professional development and resource materials; and examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.

Partner Organization(s): 
Award Number: 
0733169
Funding Period: 
Sat, 09/15/2007 to Wed, 08/31/2011
Project Evaluator: 
Heller Research Associates
Full Description: 

Supported by research on students' preconceptions, particularly in chemistry, and the need to build on the knowledge and skills that students bring to the classroom, this project implements a facets-of-thinking perspective for the improvement of formative assessment, learning, and instruction in high school chemistry. Its goals are: to identify and develop clusters of facets (students' ideas and understandings) related to key high school chemistry concepts; to develop assessment items that diagnose facets within each cluster; to enhance the existing web-based Diagnoser assessment system for administering items, reporting results, and providing teacher resource materials for interpreting and using the assessment data; to develop teacher professional development and resource materials to support their use of facet-based approaches in chemistry; and to examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.

The proposed work builds on two previously NSF-funded projects focused on designing Diagnoser (ESI-0435727) in the area of physics and on assessment development to support the transition to complex science learning (REC-0129406). The work plan is organized in three strands: (1) Assessment Development, consisting of the development and validation of facet clusters related to the Atomic Structure of Matter and Changes in Matter and the development and validation of question sets related to each facet cluster, including their administration to chemistry classes; (2) Professional Development, through which materials will be produced for a teacher workshop focused on the assessment-for-learning cycle; and (3) Technology Development, to upgrade the Diagnoser authoring system and to include chemistry facets and assessments.

Anticipated products include: (1) 8-10 validated facet clusters related to the Atomic Structure of Matter and Changes in Matter; (2) 12-20 items per facet cluster that provide diagnostic information about student understanding in relation to the facet clusters; (3) additional instructional materials related to each facet cluster, including 1-3 questions to elicit inital student ideas, a developmental lesson to encourage students' exploration of new concepts, and 3-5 prescriptive lessons to address persistent problematic ideas; and (4) a publically-available web-based Diagnoser for chemistry (www.Diagnoser.com), including student assessments and instructional materials.

Exploring the Frontiers of Science with Online Telescopes

This project researches the use of cyberinfrastructure to implement a strategy for using online telescopes as a laboratory to engage middle and high school students in cutting edge science research while providing them with significant new opportunities to apply STEM concepts, practice inquiry, and design and learn about the nature of scientific discovery.  

Partner Organization(s): 
Award Number: 
0733252
Funding Period: 
Sat, 09/15/2007 to Tue, 08/31/2010
Project Evaluator: 
Lynn Baum, JCM Associates LLC

Connected Chemistry as Formative Assessment

This project is developing, validating, and evaluating computer modeling-based formative assessments to improve student learning in chemistry. Activities include developing a series of computer models related to key topics in high school chemistry, developing questions to probe student understanding of matter and energy, identifying teaching and learning resources appropriate for different levels of student conceptual understanding, and developing professional development resources on integrating formative assessments into high school chemistry courses.

Project Email: 
Partner Organization(s): 
Award Number: 
0918295
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
William Boone

Inquiry-based High School Biology Using Sea Urchin Fertilization and Development

This project uses sea urchin embryos to provide a curriculum module for inquiry-based biology. The curriculum is provided via a new open access website. It addresses several of the National Science Content Standards and provides a range of activities suitable for all levels of high school biology. It will provide instructional support materials such as video demonstrations, animations, time lapse videos and image galleries relevant to each exercise, as well as professional development materials.

Lead Organization(s): 
Award Number: 
0454770
Funding Period: 
Fri, 04/01/2005 to Tue, 03/31/2009

SPRINTT: Student Polar Research with IPY National (and International) Teacher Training

SPRINTT uses an innovative, live, online training format to train hundreds of teachers in how to teach life, Earth, and physical science content in a polar context. Polar scientists directly inform the content and participate in the training. SPRINTT provides teachers with existing and adapted, high-quality, standards-based curriculum materials and collaborates with science and education partners to simplify research data and create a user-friendly interface from which students perform their own authentic polar research projects.

Lead Organization(s): 
Award Number: 
0732793
Funding Period: 
Sat, 09/15/2007
Full Description: 

SPRINTT brings cutting-edge science research and Alaska Native traditional knowledge into K-12 classrooms, bridging the science and society divide while inspiring the next generation of polar explorers. SPRINTT is using an innovative, live, online training format to train hundreds of teachers in how to teach life, Earth, and physical science content in a polar context. Polar scientists directly inform the content and participate in the training. SPRINTT provides teachers with existing and adapted, high-quality, standards-based curricular materials and collaborates with science and education partners to simplify research data and create a user-friendly interface from which students perform their own authentic polar research projects. Students from around the world share their research findings through a collaborative space within the SPRINTT website. The aim is to prepare hundreds of teachers to teach about the significance of the Polar Regions within the Earth system and to present materials and tools with an Alaska Native lens. Through synchronous (live) and asynchronous collaborations, teachers share best practices as they infuse and adopt polar science into their curriculum and learn to effectively facilitate student research.

SPRINTT impacts more than 25,000 upper elementary, middle, and high school students around the world. The majority of U.S. students are from underrepresented groups including Alaska Natives, and those from urban and rural areas. SPRINTT spreads the work of IPY-related partners including the Scientific Committee on Antarctic Research, the Inuit Circumpolar Council, Alaska Native Science Commission, the International Polar Foundation, the National Snow and Ice Data Center, ANDRILL, WWF International, NOAA, Bering Sea Ecosystem Study, and GEOSummit. The project is engaging the public in polar discovery through guided student research projects. Innovative teacher training brings Earth's polar systems into the classroom, and promotes international cooperation as students examine the critical role of the polar regions in global processes and the changes to the Arctic as viewed by native peoples.

Dynamic Geometry in Classrooms

This project is conducting repeated randomized control trials of an approach to high school geometry that utilizes Dynamic Geometry (DG) software and supporting instructional materials to supplement ordinary instructional practices. It compares effects of that intervention with standard instruction that does not make use of computer drawing tools.

Project Email: 
Lead Organization(s): 
Award Number: 
0918744
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013
Project Evaluator: 
Ed Dickey
Full Description: 

The project is conducting repeated randomized control trials of an approach to high school geometry that utilizes dynamic geometry (DG) software and supporting instructional materials to supplement ordinary instructional practices.  It compares effects of that intervention with standard instruction that does not make use of computer drawing/exploraction tools. The basic hypothesis of the study is that use of DG software to engage students in constructing mathematical ideas through experimentation, observation, data recording, conjecturing, conjecture testing, and proof results in better geometry learning for most students. The study tests that hypothesis by assessing student learning in 76 classrooms randomly assigned to treatment and control groups. Student learning is assessed by a geometry standardized test, a conjecturing-proving test, and a measure of student beliefs about the nature of geometry and mathematics in general. Teachers in both treatment and control groups receive relevant professional development, and they are provided with supplementary resource materials for teaching geometry. Fidelity of implementation for the experimental treatment is monitored carefully. Data for answering the several research questions of the study are analyzed by appropriate HLM methods. Results will provide evidence about the effectiveness of DG approach in high school teaching, evidence that can inform school decisions about innovation in that core high school mathematics course. The main research question of the project is: Is the dynamic geometry approach better than the business-as-usual approach in facilitating the geometric learning of our students (and more specifically our economically disadvantaged students) over the course of a full school year?

The main resources/products include geometry teachers’ professional development training materials, suggested dynamic geometry instructional activities to supplement current high school geometry curriculum, instruments such as Conjecturing-Proving Test, Geometry Belief Instrument, Classroom Observation Protocols, DG Implementation Questionnaire and Student Interview Protocols. 

The general plan for the four-year project is as follows:

Year 1: Preparation (All research instruments, professional development training and resource materials, recruitment and training of participants, etc.); 

Year 2: The first implementation of the dynamic geometry treatment, and related data collection and initial data analysis; 

Year 3: The second implementation of the DG treatment, and related data collection and data analysis; 

Year 4: Careful and detailed data analysis and reporting.

We are now in project year 3. Data are collected for the second implementation of the DG treatment. For data collected during project year 2, some initial analysis (the analysis on the geometry pretest and posttest data and the psychometric analysis on the project developed instruments) has been conducted. More thorough analysis of the collected data is still on going. The analysis on the geometry test shows that the experimental group significantly outperformed the control group on geometry performance.

The evaluation will be implemented throughout the project’s four-year duration, with an evolving balance of formative and summative evaluation activities.  In the project’s first three years, the evaluation will emphasize formative functions, designed to inform the project research team of the relative strengths and weaknesses of the research design and execution, and target corrections and improvements of the research components. Summative evaluation activities will also take place in these years with the collection of data on student achievement and teacher change. Evaluation activities for year 4 will focus on the summative evaluation of the project’s accomplishment and especially its impact on participating teachers and students. Evaluation reports will be issued annually with a final summative report presented at the end of year 4.

The research results will be disseminated via the following efforts: 1) Creating and constantly updating the project web site; 2) Publishing the related research articles in research journals such as Journal for Research in Mathematics Education; 3) Presenting at state, regional, national, and international research and professional meetings; 4) Meeting with state and local education agencies, schools, and mathematics teacher educators at other universities for presenting the research findings and using the DG approach in more schools and more mathematics teacher education programs; and 5) Contacting more school districts, with a view to developing relationships and ties that would smooth the way to disseminate the research results.

Current Climate Changes over Eastern Siberia and Interior Alaska and their Impact on Permafrost Landscapes, Ecosystem Dynamics, and Hydrological Regime

Through integration of research and education, this project is providing high resolution data on the spatial distribution of the thermal state of permafrost in Alaska, improving the general knowledge of Earth's climatic patterns, bringing science to remote Alaskan villages, and providing an opportunity for younger generations to take part in understanding Earth's climatic and hydrologic systems.

Partner Organization(s): 
Award Number: 
0731739
Funding Period: 
Thu, 05/15/2008 to Sat, 04/30/2011

Pages

Subscribe to Website