Website

Identifying and Measuring the Implementation and Impact of STEM School Models

The goal of this Transforming STEM Learning project is to comprehensively describe models of 20 inclusive STEM high schools in five states (California, New Mexico, New York, Ohio, and Texas), measure the factors that affect their implementation; and examine the relationships between these, the model components, and a range of student outcomes. The project is grounded in theoretical frameworks and research related to learning conditions and fidelity of implementation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1238552
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Full Description: 

The goal of this Transforming STEM Learning project is to comprehensively describe models of 20 inclusive STEM high schools in five states (California, New Mexico, New York, Ohio, and Texas), measure the factors that affect their implementation; and examine the relationships between these, the model components, and a range of student outcomes. The project is grounded in theoretical frameworks and research related to learning conditions and fidelity of implementation.

The study employs a longitudinal, mixed-methods research design over four years. Research questions are: (1) What are the intended components of each inclusive STEM school model?; (2) What is the status of the intended components of each STEM school model?; (3) What are the contexts and conditions that contribute to and inhibit the implementation of components that comprise the STEM schools' models?; and (4) What components are most closely related to desired student outcomes in STEM schools? Data gathering strategies include: (a) analyses of school components (e.g., structures, interactions, practices); (b) measures of the actual implementation of components through teacher, school principals, and student questionnaires, observation protocols, teacher focus groups, and interviews; (c) identification of contextual conditions that contribute to or inhibit implementation using a framework inclusive of characteristics of the innovation, individual users, leadership, organization, and school environment using questionnaires and interviews; and (d) measuring student outcomes using four cohorts of 9-12 students, including standardized test assessment systems, grades, student questionnaires (e.g., students' perceptions of schools and teachers, self-efficacy), and postsecondary questionnaires. Quantitative data analysis strategies include: (a) assessment of validity and reliability of items measuring the implementation status of participating schools; (b) exploratory factor analysis to examine underlying dimensions of implementation and learning conditions; and (c) development of school profiles, and 2- and 3-level Hierarchical Linear Modeling to analyze relationships between implementation and type of school model. Qualitative data analysis strategies include:(a) descriptions of intra- and inter-school implementation and factor themes, (b) coding, and (c) narrative analysis.

Expected outcomes are: (a) research-informed characterizations of the range of inclusive STEM high school models emerging across the country; (b) identification of components of STEM high school models important for accomplishing a range of desired student achievement; (c) descriptions of contexts and conditions that promote or inhibit the implementation of innovative STEM teaching and learning; (d) instruments for measuring enactment of model components and the learning environments that affect them; and (e) methodological approaches for examining relationships between model components and student achievement.

Ocean Tracks: Investigating Marine Migrations in a Changing Ocean (Collaborative Research: Krumhansl)

Ocean Tracks is developing and classroom testing powerful Web-based visualization and analysis tools derived from state-of-the-art knowledge about how to support student inquiry with data. Powerful Web-based visualization and analysis tools, derived from state-of-the-art knowledge about how to support student inquiry with data, allow students to learn and apply core concepts in ecology, biology, environmental science, earth science, oceanography, and climate science.

Award Number: 
1222413
Funding Period: 
Sat, 09/15/2012 to Sun, 08/31/2014
Full Description: 

Ocean Tracks: Investigating Marine Migrations in a Changing Ocean, a collaboration between Education Development Center, Inc. (EDC), and Stanford University's Hopkins Marine Station, is developing a unique model of how to enable high school students to use authentic scientific data via an interactive Web-interface. Ocean Tracks is developing and classroom testing powerful Web-based visualization and analysis tools derived from state-of-the-art knowledge about how to support student inquiry with data. An interactive website provides access to near-real-time and archival data from electronically tagged marine animals, drifting buoys, and Earth-orbiting satellites collected through the Global Tagging of Pelagic Predators, National Oceanic and Atmospheric Administration's (NOAA) Adopt-a-Drifter, and MY NASA DATA programs. Powerful Web-based visualization and analysis tools, derived from state-of-the-art knowledge about how to support student inquiry with data, allow students to learn and apply core concepts in ecology, biology, environmental science, earth science, oceanography, and climate science.

Concurrently, agencies such as the NSF, NOAA, and NASA are making significant investments in sophisticated cyberinfrastructures (CI) that will make available a treasure trove of scientific data via the Internet to scientists and educators; there is tremendous potential for this data to transform teaching and learning by engaging students in authentic scientific work. However, modifying expert-data interfaces for use by students and supporting students as they engage in scientific inquiry with data are significant challenges. There is an urgent need for model programs such as Ocean Tracks that instantiate the best knowledge of experienced educators and education researchers, practicing scientists, and technology experts. Ocean Tracks harnesses the promise of emerging CI to engage high school students in the use of data visualization tools to study the movement patterns and habitat usage of marine animals (e.g., sharks, tunas, turtles, seals, and seabirds) in relation to oceanographic variables (e.g., sea surface temperature, chlorophyll, and current speed and direction). The knowledge gained from Ocean Tracks will have broad impact by serving as a model for designing and implementing projects in which students, teachers, and scientists collaborate to conduct scientific research, even in classrooms that are far from the ocean and scientists' laboratories.

Ocean Tracks: Investigating Marine Migrations in a Changing Ocean (Collaborative Research: Block)

Ocean Tracks is developing and classroom testing powerful Web-based visualization and analysis tools derived from state-of-the-art knowledge about how to support student inquiry with data. Powerful Web-based visualization and analysis tools, derived from state-of-the-art knowledge about how to support student inquiry with data, allow students to learn and apply core concepts in ecology, biology, environmental science, earth science, oceanography, and climate science.

Lead Organization(s): 
Award Number: 
1222220
Funding Period: 
Sat, 09/15/2012 to Sun, 08/31/2014
Full Description: 

Ocean Tracks: Investigating Marine Migrations in a Changing Ocean, a collaboration between Education Development Center, Inc. (EDC), and Stanford University's Hopkins Marine Station, is developing a unique model of how to enable high school students to use authentic scientific data via an interactive Web-interface. Ocean Tracks is developing and classroom testing powerful Web-based visualization and analysis tools derived from state-of-the-art knowledge about how to support student inquiry with data. An interactive website provides access to near-real-time and archival data from electronically tagged marine animals, drifting buoys, and Earth-orbiting satellites collected through the Global Tagging of Pelagic Predators, National Oceanic and Atmospheric Administration's (NOAA) Adopt-a-Drifter, and MY NASA DATA programs. Powerful Web-based visualization and analysis tools, derived from state-of-the-art knowledge about how to support student inquiry with data, allow students to learn and apply core concepts in ecology, biology, environmental science, earth science, oceanography, and climate science.

Concurrently, agencies such as the NSF, NOAA, and NASA are making significant investments in sophisticated cyberinfrastructures (CI) that will make available a treasure trove of scientific data via the Internet to scientists and educators; there is tremendous potential for this data to transform teaching and learning by engaging students in authentic scientific work. However, modifying expert-data interfaces for use by students and supporting students as they engage in scientific inquiry with data are significant challenges. There is an urgent need for model programs such as Ocean Tracks that instantiate the best knowledge of experienced educators and education researchers, practicing scientists, and technology experts. Ocean Tracks harnesses the promise of emerging CI to engage high school students in the use of data visualization tools to study the movement patterns and habitat usage of marine animals (e.g., sharks, tunas, turtles, seals, and seabirds) in relation to oceanographic variables (e.g., sea surface temperature, chlorophyll, and current speed and direction). The knowledge gained from Ocean Tracks will have broad impact by serving as a model for designing and implementing projects in which students, teachers, and scientists collaborate to conduct scientific research, even in classrooms that are far from the ocean and scientists' laboratories.

Supporting the Emergence of a Professional Teaching Community Through Collective Knowledge-Building in Assessment and Feedback of Mathematical Thinking (Collaborative Research: Silverman)

This collaborative project is developing an online, professional teaching community that addresses issues of assessment in mathematics classes. The developers are building on the success of the NSF-supported Math Forum's Problem of the Week program to create a community that works to increase students' mathematics learning by helping teachers stimulate student thinking, assess that thinking, and provide useful feedback to students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222355
Funding Period: 
Sat, 09/01/2012 to Fri, 08/31/2018
Full Description: 

This collaborative work involves Drexel University and Temple University where they are developing an online, professional teaching community that is addressing issues of assessment in mathematics classes. The developers are building on the success of the NSF-supported Math Forum's Problem of the Week program to create a community that is working to increase students' mathematics learning by helping teachers stimulate student thinking, assess that thinking, and provide useful feedback to students. The teachers are working together to create rubrics for assessing the progress of students as they solve challenging mathematics problems. The program is structured so that the teachers are learning mathematics and assessment strategies in addition to establishing a research-based model for online, professional communities.

Researchers are studying how specific activities (e.g., discourse, active participation, use of rubrics, feedback, and reflection) and an online community support teachers' engagement in authentic and generative assessment. Researchers are using ethnographic methods to understand the development of the community, and conducting focus groups and individual interviews to determine the impact of participation in the community on mathematics teachers. In addition, they are collecting data through discourse analysis, student work analysis, and rubric analysis to determine the optimal design of the products. The intentional structure of the online community builds on research findings on creating professional communities and research on assessing mathematics learning.

Online professional teaching communities offer new venues for communication, professional development, and shared work among mathematics teachers. The Math Forum provides an optimal, online context for expanding the popular Problem of the Week into a productive discussion of assessment of problem solving, the building of specific rubrics, and the related reflection on how to encourage student thinking. This collaborative work will offer rubrics for assessing mathematical problem solving, a new model for online professional development, and extensive information on building an online mathematics community.

Educating the Imagination: A Studio Design for Transformative Science Learning

Educating the Imagination will develop a studio approach to science for underrepresented high school students. The approach integrates scientific and artistic habits of mind and forms of engagement for meaningful learning in water-related sciences. Youth will a) investigate significant water-related phenomena, b) develop creative responses to the phenomena that foster new understandings and possibilities for action, and c) exhibit their responses community-wide to involve others in re-imagining water locally and globally.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1135120
Funding Period: 
Sat, 10/01/2011 to Mon, 09/30/2013
Full Description: 

TERC, in collaboration with the Boston Arts Academy is developing an innovative studio learning environment for students in grades 7-9. This pilot project focuses on object-centered inquiry about water and water-related problems of local and global significance. The project promotes student learning through multi-faceted studies involving hydrology, history, health, digital media, web-based artifact generation, real world data collection, interactions with scientists and artists, and community exhibitions of student work. The primary goal of the Educating the Imagination project is to develop a more effective model for engaging and improving the science learning and achievement of underrepresented urban students.

Studio learning intentionally integrates experimentation with practices of analysis, interpretation, critique of work and conceptual development. During a four week summer studio program, students, guided by teachers and scientists, will produce research-based projects about water and create plans to exhibit their work in the Boston area during the school year. Students will be assessed along multiple dimensions ranging from the depth of their understanding of water science ideas, their ability to make claims and arguments, their use of multiple tools and modes of representation, and the quality of their presentations. Over a two year period researchers will collect data on the studio design model and student learning to determine which aspects of the studio are effective in engaging students in object-oriented inquiry related to important water science ideas and problems.

Educating the Imagination will provide valuable insights about the studio design model and its application to promote science learning. In addition, this project directly addresses the problem of inequality in opportunities to learn and participate in science by developing and testing an innovative, non-traditional learning model with underrepresented urban students. The results of this project could significantly change how we think about and structure STEM learning environments in urban settings.

Computer-Supported Math Discourse Among Teachers and Students (Collaborative Research: Powell)

This project will design, develop, and test an online collaborative learning environment where students and teachers solve mathematical problems and communicate their thinking.  This online collaborative learning environment will help increase the quality and quantity of math discourse among mathematics teachers and students.  The researchers will also examine the impact of the online collaborative learning environment on students' significant mathematical discourse and achievement.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1118888
Funding Period: 
Thu, 09/01/2011 to Fri, 08/31/2018
Full Description: 

This full research and development project is to design, develop, and test a cutting-edge learning environment where students and teachers solve mathematical problems and communicate their thinking with others through the virtual environment. The major focus is to increase the quality and quantity of significant math discourse among mathematics teachers and their students by using the virtual learning environment. The researchers will test the usability of the learning environment for engaging students in high quality discourse. The researchers will also examine the impact of the virtual learning environment on student significant mathematical discourse and achievement.

The project uses a design research method as well as summative evaluations to achieve research and development goals. Mixed methods will be used to examine the impact of the virtual learning environment on student significant mathematical discourse and achievement.

The findings of the project contribute to the field in three ways: (1) The virtual learning environment can be both an effective pedagogical tool and a research tool in mathematics education; (2) It will contribute to our understanding about the nature of mathematical discourse online as well as about ways to foster the quality and quantity of significant math discourse among teachers and their students; and (3) This project can provide insights into effective online deliveries of courses.

Computer-Supported Math Discourse Among Teachers and Students (Collaborative Research: Weimar)

This project will design, develop, and test an online collaborative learning environment where students and teachers solve mathematical problems and communicate their thinking. This online collaborative learning environment will help increase the quality and quantity of math discourse among mathematics teachers and students. The researchers will also examine the impact of the online collaborative learning environment on students' significant mathematical discourse and achievement.

Project Email: 
Award Number: 
1829543
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2019
Full Description: 

This full research and development project is to design, develop, and test a cutting-edge online collaborative learning environment where students and teachers solve mathematical problems and communicate their thinking with others. The major focus is to increase the quality and quantity of significant math discourse among mathematics teachers and their students by using this online collaborative learning environment. This online collaborative learning environment is based on PIs' prior work called Virtual Math Teams that integrates synchronous and asynchronous media with the first multi-user dynamic-math-visualization application. The researchers will test the usability of the online ollaborative learning environment for engaging students in high quality discourse. The researchers will also examine the impact of the online ollaborative learning environment on students' significant mathematical discourse and achievement.

The project uses a design research method as well as summative evaluations to achieve research and development goals. Discourse analysis and regression models will be used to examine the impact of the online collaborative learning environment on student significant mathematical discourse and achievement.

The findings of the project contribute to the field in three ways: (1) The online collaborative learning environment can be both an effective pedagogical tool and a research tool in mathematics education; (2) It will contribute to our understanding about the nature of mathematical discourse online as well as about ways to foster the quality and quantity of significant math discourse among teachers and their students; and (3) This project can provide insights into effective online deliveries of courses.

This project was previously funded under award #1118773, 1743611.

Arcadia: The Next Generation—Transforming STEM Learning Through Transmedia Games

This project will study the design features of an experimental gaming environment called Arcadia: The Next Generation. Researchers working with a group of formal and informal educators to study the connections between scientific inquiry in Arcadia and STEM learning. The project provides a dynamic and evolving place where gamers, educators, parents, and citizen scientists can come together to share, rate, and build knowledge through a variety of fun science inquiry games.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1134919
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2013
Full Description: 

Designers and researchers from the Educational Gaming Environments group (EdGE) at TERC are studying the design features (e.g., tools, media platforms, facilitation) of an experimental gaming environment called Arcadia: The Next Generation. This gaming environment supports high-quality scientific knowledge building in a diverse, public audience. EdGE and its partner, GameGurus are integrating web-based social networking, augmented reality, and data sharing apps on smartphones into Arcadia and are working with a group of formal and informal educators to study the connections between scientific inquiry in Arcadia and STEM learning. EdGE is also examining various economic models that can support the long-term sustainability of STEM gaming environments that bridge home, community, and formal and informal learning. The project provides a dynamic and evolving place where gamers, educators, parents, and citizen scientists can come together to share, rate, and build knowledge through a variety of fun science inquiry games.

The research associated with Arcadia looks specifically at how game design (tools, environment, storyline, reward system) can support and sustain scientific inquiry. Researchers will relate these design features to the extent and nature of scientific inquiry in Arcadia, the impact the gaming experience has on players' sense of science identity and behaviors, and how this varies for different types of players. Researchers are using methods from netnography (Kozinets, 2002, Hine 2000) where digital records of avatar activity are incorporated along with participant observations, surveys, and interviews. A group of players recruited through colleagues' programs in informal and formal science education settings are the subjects for a smaller sub-study that looks at how to help transfer the science skills and knowledge gained in social games to classroom and other forms of science education. EdGE has two small advisory groups: a group of formal and informal educators to help with formative evaluation and a group of experts in the areas of research to help guide the interpretation of the research findings.

Arcadia: The Next Generation is an important step in working towards a vision of future learning environments that span schools, homes, community settings, and social entertainment sites where transmedia learning networks integrate real-life components such as indoor and outdoor classrooms with free-choice Internet experiences and citizen science programs. The primary deliverable of Arcadia: The Next Generation is a model game environment that attracts and retains a player audience and engages them in high quality scientific inquiry. The associated research informs the field on how to leverage the tremendous amount of time the public spends in social digital games, and how to direct that time towards productive science learning. EdGE is partnering with youth and adult programs at informal and citizen science centers to recruit and select the research sample that is representative of the US population, including minority youth and adults, so that researchers can learn how to sustain inquiry for a broad and diverse population of social game players.

Further Development and Testing of the Target Inquiry Model for Middle and High School Science Teacher Professional Development (Collaborative Research: Yezierski)

This project scales and further tests the Target Inquiry professional development model. The model involves teachers in three core experiences: 1) a research experience for teachers, 2) materials adaptation, and 3) an action research project. The original program was implemented with high school chemistry teachers, and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students.

Partner Organization(s): 
Award Number: 
1118749
Funding Period: 
Mon, 08/15/2011 to Wed, 07/31/2013
Full Description: 

This project scales and further tests the Target Inquiry (TI) professional development model. The TI model involves teachers in three core experiences: 1) a research experience for teachers, 2) materials adaptation, and 3) an action research project. The original program was implemented with high school chemistry teachers at Grand Valley State University (GVSU), and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students. The scale-up and further testing would involve adding physics, biology and geology at Grand Valley State University, and implementing the program at Miami University (MU) with chemistry teachers. Three research questions will be studied:

1) How do the three TI core experiences influence in-service high school science teachers' (i) understanding of the nature of science; (ii) attitudes and beliefs about inquiry instruction; and (iii) classroom instructional methods in the derivatives of the TI model?

2) How does teacher participation in TI affect students' process skills (scientific reasoning and metacognition) and conceptual understanding of science in the derivatives of the TI model?

3) What are the challenges and solutions related to implementing TI in science disciplines beyond chemistry and in other regions?

The research design is quasi-experimental and longitudinal, incorporating implementation with research, and using quantitative and qualitative methods blended in a design research framework. A total of 54 middle and high school science teachers are being recruited for the study. The TI group is completing the TI program (N = 27; 15 at GVSU; 12 at MU) while the comparison group (same sizes and locations) is not. The comparison group is matched according to individual characteristics and school demographics. All teachers are being studied, along with their students, for 4 years (pre-program, post-RET, post-MA, post-AR/post-program). TI teachers are taking 15 credits of graduate level science courses over three years, including summers. Courses include a graduate seminar focused on preparing for the research experience, the research experience in a faculty member's science lab during the summer, application of research to teaching, action research project development, adaptation and evaluation of inquiry-focused curricula, and interpretation and analysis of classroom data from action research. Consistent feedback from professional development, teachers, and evaluation, including the previous implementation, contributes to a design-based approach. Teacher factors being studied include nature of science, inquiry teaching knowledge and beliefs, and quality of inquiry instruction. Student factors being studied include scientific reasoning; metacognition, self-efficacy, and learning processes in science; and content knowledge and conceptual understanding. Only established quantitative and qualitative instruments are being used. Quantitative analysis includes between-group comparisons by year on post-tests, with pre-tests as covariates, and multi-level models with students nested with teachers, and teachers within sites, with the teacher level as the primary unit of change. Trends over time between the treatment and comparison groups are being examined. The evaluation is using a combination of pre/post causal comparative quantitative measures and relevant qualitative data from project leaders and participants, as well as from the comparison group, to provide formative and summative evaluation input.

Outcomes of the project include documentation and understanding of the impacts on science teachers' instruction and student outcomes of research experiences for teachers when they are supported by materials adaptation and action research, and an understanding of what it takes to scale the model to different science disciplines and a different site. The project is also producing a website of instructional materials for middle and secondary science.

Developing Teaching Expertise in K-5 Mathematics

This project designs materials and an accompanying support system to enable the development of expertise in the teaching of mathematics at the elementary level. The project has four main components: online professional development modules; practice-based assessments; resources for facilitators; and web-based technologies to deliver module content to diverse settings. Three modules are being developed and focus on fractions, reasoning and explanation, and geometry. Each module is organized into ten 1.5 hour sessions.

Project Email: 
Award Number: 
1118745
Funding Period: 
Thu, 09/01/2011 to Fri, 08/31/2018
Project Evaluator: 
American Institutes for Research
Full Description: 

Developers and researchers at the University of Michigan and the University of Denver are engaged in a project to design materials and an accompanying support system to enable the development of expertise in the teaching of mathematics at the elementary level. The project has four main components: a set of online professional development modules; practice-based assessments; a set of resources for facilitators; and web-based technologies to deliver module content to diverse settings. Three modules are planned: one focused on fractions and one focused on reasoning and explanation designed by Deborah Ball, Hyman Bass and the University of Michigan development team; and one on geometry developed by Douglas Clements and Julie Sarama at the University of Denver. Each module is organized into ten 1.5 hour sessions. 

Each module goes through a two-year design and development process that includes initial design, piloting, revision, and dissemination. Modules are piloted in a variety of settings, including university based courses for practicing teachers and district based in-service activities. These contexts include face-to-face professional development, real-time distance learning, and combinations of the two. Data are collected on participant engagement with the modules, on teacher classroom practice, and on mathematical knowledge for teaching.

The modules and associated materials will be widely available and will be free to schools. The materials can be imported into any learning management system, such as Blackboard, Moodle, and others.

Pages

Subscribe to Website