Scaling Up Mathematics Achievement (SUMA)

This project aims to (1) investigate whether or not it is possible to successfully scale-up and adapt the Capacity Building Systems Model used in the Gadsden Mathematics Initiative and improve mathematics achievement for all students in a larger school district, and (2) replicate success in broadening the participation of underrepresented groups in entering STEM field by closing the achievement gap and raising the achievement level of underrepresented students in mathematics.

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
Funding Period: 
Sat, 09/01/2007 to Tue, 08/31/2010
Project Evaluator: 
Cori Groth and Cheryl Harris

Cyber-enabled Design Research to Enhance Teachers' Critical Thinking Using a Major Video Collection on Children's Mathematical Reasoning (Collaborative Research: Maher)

This project is working to create a cyber infrastructure that supports development and documentation of additional interventions for teacher professional development using the video collection, as well as other videos that might be added in the future by teacher educators or researchers, including those working in other STEM domains.

Lead Organization(s): 
Award Number: 
Funding Period: 
Mon, 09/15/2008 to Fri, 08/31/2012
Full Description: 

The Video Mosaic Collaborative features  videos of student mathematics reasoning,  tools and services to encourage learning, research and practices fostering the development of student reasoning.  The VMC is a collection and service portal intended to support three primary audiences—teacher educators and their pre-service and in-service students, practicing teachers, and researchers.  The Video Mosaic Collaborative features a 22-year longitudinal study of students’ mathematical reasoning skills as they are developed from elementary through high school grades.  The VMC has been carefully designed to leverage the insights and strategies that can be mined in this extensive and unique video collection featuring observations, interventions and interviews with students solving mathematics problems in the classroom and in informal learning settings.  A careful metadata strategy was designed by the library and education research partners in collaboration to capture elements for searching that include forms of reasoning and heuristics, math strand, math problem, NCTM standards, grade level and type of educational environment.  Students and researchers are identified and can be individually tracked through the collection.  Transcripts, student work and dissertations resulting from the videos are linked in metadata.  Tools, such as the VMCAnalytic, a video annotation and analysis tool, are provided to enable registered participants to reuse the videos for instruction, study and research by creating personal clips and combining clips to accomplish research goals such as demonstrating changes in reasoning for an individual student studying probability over several video sessions.  Unlike other video annotation tool, the VMC analytic creates  XML-based independent resources that can be kept private in the researcher’s workspace but that can also be shared.  Shared analytics will be mined for keywords, which will retrieve the video(s) being analyzed, thus adding user tagging to the metadata for the videos.  The analytic resources created are not independently searched and displayed but will display as part of the context for the videos in the collection, along with student work, dissertations, and ultimately published articles, etc., all of which form the critical context of research and study surrounding each video.

Different search strategies, guidance in using videos and opportunities to consult or collaborate with others will be provided for each primary audience of the VMC.  The latest iteration of the portal, with collections and services available for immediate use, will be presented and demonstrated at the DRK12 Principal Investigators’ meeting poster session.  Visitors to the poster will be encouraged to search the portal and to create a small analytic, in a hands-on, interactive one on one demonstration.  We believe that the VMC makes a unique and significant contribution to the efforts of teacher educators, practicing teachers and researchers to discover insights and develop innovative strategies to support the development of student reasoning in mathematics education.

Integrating Computing Across the Curriculum (ICAC): Incorporating Technology into STEM Education Using XO Laptops

This project builds and tests applications tied to the school curriculum that integrate the sciences with mathematics, computational thinking, reading and writing in elementary schools. The investigative core of the project is to determine how to best integrate computing across the curriculum in such a way as to support STEM learning and lead more urban children to STEM career paths.

Project Email: 
Award Number: 
Funding Period: 
Sat, 08/01/2009 to Sun, 07/31/2011
Project Evaluator: 
Leslie Cooksy - Univ. of Delaware
Full Description: 

Computer access has opened an exciting new dimension for STEM education; however, if computers in the classroom are to realize their full potential as a tool for advancing STEM education, methods must be developed to allow them to serve as a bridge across the STEM disciplines. The goal of this 60-month multi-method, multi-disciplinary ICAC project is to develop and test a program to increase the number of students in the STEM pipeline by providing teachers and students with curricular training and skills to enhance STEM education in elementary schools. ICAC will be implemented in an urban and predominantly African American school system, since these schools traditionally lag behind in filling the STEM pipeline. Specifically, ICAC will increase computer proficiency (e.g., general usage and programming), science, and mathematics skills of teachers and 4th and 5th grade students, and inform parents about the opportunities available in STEM-centered careers for their children.

The Specific Aims of ICAC are to:

SA1. Conduct a formative assessment with teachers to determine the optimal intervention to ensure productive school, principal, teacher, and student participation.

SA2. Implement a structured intervention aimed at (1) teachers, (2) students, and (3) families that will enhance the students’ understanding of STEM fundamentals by incorporating laptops into an inquiry-based educational process.

SA3. Assess the effects of ICAC on:

a. Student STEM  engagement and performance.

b. Teacher and student computing specific confidence and utilization.

c. Student interest in technology and STEM careers.

d. Parents’ attitudes toward STEM careers and use of computers.

To enable us to complete the specific aims noted above, we have conducted a variety of project activities in Years 1-3. These include:

  1. Classroom observations at the two Year 1 pilot schools
  2. Project scaling to 6 schools in Year 2 and 10 schools in Year 3
  3. Semi-structured school administrator interviews in schools
  4. Professional development sessions for teachers
  5. Drafting of curriculum modules to be used in summer teacher institutes and for dissemination
  6. In-class demonstration of curriculum modules
  7. Scratch festivals each May
  8. Summer teacher institutes
  9. Student summer camps
  10. Surveying of teachers in summer institutes
  11. Surveying of teachers and students at the beginning and end of the school year
  12. Showcase event at end of student workshops

The specific ICAC activities for Years 2-5 include:

  • Professional development sessions (twice monthly for teachers), to integrate the ‘best practices’ from the program.
  • Working groups led by a grade-specific lead teacher. The lead teacher for each grade in each school will identify areas where assistance is needed and will gather the grade-specific cohort of teachers at their school once every two weeks for a meeting to discuss the progress made in addition to challenges to or successes in curricula development.  
  • ICAC staff and prior trained teachers will visit each class monthly during the year to assist the teachers and to evaluate specific challenges and opportunities for the use of XOs in that classroom.  
  • In class sessions at least once per month (most likely more often given feedback from Teacher Summer Institutes) to demonstrate lesson plans and assist teachers as they implement lesson plans.
  • ICAC staff will also hold a joint meeting of administrators of all target schools each year to assess program progress and challenges. 
  • Teacher Summer Institutes – scaled-up to teachers from the new schools each summer to provide training in how to incorporate computing into their curriculum.
  • Administrator sessions during the Teacher Summer Institutes; designed to provide insight into how the laptops can facilitate the education and comprehension of their students in all areas of the curriculum, discuss flexible models for physical classroom organization to facilitate student learning, and discussions related to how to optimize the use of computing to enhance STEM curricula in their schools.  Student Summer Computing Camps – designed to teach students computing concepts, make computing fun, and enhance their interest in STEM careers.  
  • ICAC will sponsor a yearly showcase event in Years 2-5 that provides opportunities for parents to learn more about technology skills their children are learning (e.g., career options in STEM areas, overview of ICAC, and summary of student projects). At this event, a yearly citywide competition among students also will be held that is an expanded version of the weeklong showcase event during the student summer camps.
  • Surveying of students twice a year in intervention schools.
  • Surveying of teachers at Summer Institutes and then at the end of the academic year.
  • Coding and entry of survey data; coding of interview and observational data.
  • Data analysis to examine the specific aims (SA) noted above:
    • The impact of ICAC on teacher computing confidence and utilization (SA 3.b).
    • Assess the effects of (1) teacher XO training on student computing confidence and utilization (SA 3.b), (2) training on changes in interest in STEM careers (SA 3.c), and (3) XO training on student engagement (SA 3.a).
    • A quasi-experimental comparison of intervention and non-intervention schools to assess intervention effects on student achievement (SA 3.a).
    • Survey of parents attending the yearly ICAC showcase to assess effects on parental attitudes toward STEM careers and computing (SA 3.d).

The proposed research has the potential for broad impact by leveraging technology in BCS to influence over 8,000 students in the Birmingham area. By targeting 4th and 5th grade students, we expect to impact STEM engagement and preparedness of students before they move into a critical educational and career decision-making process. Further, by bolstering student computer and STEM knowledge, ICAC will impart highly marketable skills that prepare them for the 81% of new jobs that are projected to be in computing and engineering in coming years (as predicted by the US Bureau of Labor Statistics).3 Through its formative and summative assessment, ICAC will offer intellectual merit by providing teachers throughout the US with insights into how computers can be used to integrate the elementary STEM curriculum. ICAC will develop a model for using computers to enhance STEM education across the curriculum while instilling a culture among BCS schools where computing is viewed as a tool for learning.

(Previously listed under Award # 0918216)

Undergraduate Science Course Reform Serving Pre-service Teachers: Evaluation of a Faculty Professional Development Model

This project focuses on critical needs in the preparation and long-term development of pre-service, undergraduate, K-6 teachers of science. The project investigates the impact on these students of undergraduate, standards-based, reform entry level science courses developed by faculty based on their participation in the NASA Opportunities for Visionary Academics processional development program to identify: short-term impacts on undergraduate students and long-term effects on graduated teachers; characteristics of reform courses and characteristics of effective development efforts.

Project Email: 
Lead Organization(s): 
Award Number: 
Funding Period: 
Tue, 08/01/2006 to Sun, 07/31/2011
Full Description: 

The Undergraduate Science Course Reform Serving Pre-service Teachers: Evaluation of a Faculty Professional Development Model project is informally known as the National Study of Education in Undergraduate Science (NSEUS). This 5-year project focuses on critical needs in the preparation and long-term development of pre-service, undergraduate, K-6 teachers of science. The goal is to investigate the impact on these students of undergraduate, standards-based, reform entry-level science courses developed by faculty in the NASA Opportunities for Visionary Academics (NOVA) professional development model. Twenty reform and 20 comparison undergraduate science courses from a national population of 101 diverse institutions participating in NOVA, stratified by institutional type, were be selected and compared in a professional development impact design model. Data is being collected in extended on-site visits using multiple quantitative and qualitative instruments and analyzed using comparative and relational studies at multiple points in the impact design model. Criteria for success of the project will be determined by conclusions drawn from the research questions; including evidence and effect sizes of short-term impacts on undergraduate students and long-term effects on graduated in-service teachers in their own classroom science teaching; identification of characteristics of undergraduate reformed courses that produce significant impacts; identification of characteristics of effective faculty, and effective dissemination.

Project Publications and Presentations:

Lardy, Corrine; Mason, Cheryl; Mojgan, Matloob-Haghanikar; Sunal, Cynthia Szymanski; Sunal, Dennis Wayne; Sundberg, Cheryl & Zollman, Dean (2009). How Are We Reforming Teaching in Undergraduate Science Courses? Journal of College Science Teaching, v. 39 (2), 12-14.  

Building an Understanding of Science

Understanding Science provides an accurate portrayal of the nature of science and tools for teaching associated concepts. This project has at its heart a public re-engagement with science that begins with teacher preparation. To this end, its immediate goals are (1) improve teacher understanding of the nature of the scientific enterprise and (2) provide resources and strategies that encourage and enable K-16 teachers to incorporate and reinforce the nature of science throughout their science teaching.

Award Number: 
Funding Period: 
Mon, 03/12/2007 to Wed, 05/11/2011
Project Evaluator: 

The Development of Student Cohorts for the Enhancement of Mathematical Literacy in Under Served Populations

This project is developing and conducting research on the Cohort Model for addressing the mathematics education of students that perform in the bottom quartile on state and district tests. The predicted outcome is that most students will remain in the cohort for all four years and that almost all of those who do will perform well enough on college entrance exams to be admitted and will test out of remedial mathematics courses.

Lead Organization(s): 
Award Number: 
Funding Period: 
Mon, 09/01/2008 to Wed, 08/31/2011
Project Evaluator: 
Inverness Research, Inc.
Full Description: 

Project Summary

This is a Full Research and Development proposal which addresses the Contextual Challenge: How can the learning of significant STEM content be achieved to ensure public literacy and workforce readiness?  Our nation is failing to prepare millions of youth for meaningful and productive participation in an information-based society. The target population are those students performing in the bottom quartile on state and national tests, many of these are children of color living in under resourced communities, and most of these young people do not finish high school and end up diverted into an underground economy, gangs, and prisons.   

This project addresses this failure by further developing and testing an approach that the Algebra Project is developing for high school mathematics, in which students form a cohort that stays together for all four years of high school, study mathematics every day using project-designed curricular materials with teachers who participate in project professional development, and are supported by local community groups. 

The Algebra Project seeks to stimulate a demand for math literacy in those most affected by its absence -- the young people themselves.  It stresses the importance of peer culture, using lessons learned from experiences in the 1960s Civil Rights Movement, as well as in the emergence of project graduates into a group with their own perspectives and initiatives. 

In the 60s, project founders learned how to use the meeting place as a tool to engage and empower the people that the meeting was intended to serve.  In the proposed project, there are two meeting places: the students’ high school mathematics classroom and supplementary education activities; and the network of sites around the country that are communicating and learning how to develop and implement cohorts. Young peoples’ roles in each of these settings are key to creating the motivation and commitment needed for student success as well as developing local interest.  The combination of classroom and professional development work, innovative curriculum materials, and community involvement creates an intervention that can significantly transform the peer culture, even in the face of negative forces.

The Algebra Project has developed a cohort model that we predict will stimulate and enable students to pass the state and district mandated tests in mathematics, to pass the mathematics portions of any graduation test, and to score well enough on the SAT or ACT to enter college, and to place into mathematics courses for college credit (not remedial courses).  Building on previous awards, the project will continue to research and develop the cohort model, and will create a small network of cohorts to establish that our model can be widely successful.

Intellectual merit:  This project will demonstrate how students entering high school performing in the bottom quartile nationally and state-wide can be prepared for college-level mathematics, using lessons learned from many years of past experience working in such communities and in their middle schools, and more recently in their high schools and in collaboration with university mathematicians.  The research results are critical to the nation’s learning how to improve mathematics achievement for all children – to gaining a sense of what such a program “looks and feels like”, and what resources and commitments are required, from which institutions. 

Broader impact:  The results of this discovery research project will advance understanding of how to improve mathematics learning and achievement in low performing districts, so students are prepared to take college mathematics without repeating high school mathematics in early college.  It will also demonstrate the resources and commitments needed to reach this result.

Learning Science as Inquiry with the Urban Advantage: Formal-Informal Collaborations to Increase Science Literacy and Student Learning

This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"

Award Number: 
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013
Project Evaluator: 
Learning Innovations at WestEd
Full Description: 

The American Museum of Natural History and Michigan State University propose a research and development project focused on DR-K12 challenge #2 and the hypothesis that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. The overarching questions that drive this project are: How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science? How are these resources then used, and to what extent and in what ways do they contribute to participants’ learning? How are those resources then used for student learning? Answering these questions will involve the use of existing and new resources, enhancement of existing relationships, and a commitment to systematically collect evidence. Urban Advantage (UA) is a middle school science initiative involving informal science education institutions that provides professional development for teachers and hands-on learning for students to learn how to conduct scientific investigations. This project will (1) refine the UA model by including opportunities to engage in field studies and the use of authentic data sets to investigate the zebra mussel invasion of the Hudson River ecosystem; (2) extend the resources available to help parents, administrators, and teachers understand the nature of scientific work; and (3) integrate a research agenda into UA. Teaching cases will serve as resources to help teachers, students, administrators, and families understand scientific inquiry through research on freshwater ecosystems, and—with that increased understanding—support student learning. Surveys, observations, and assessments will be used to document and understand the effects of professional development on teachers, students, administrators, and parents. The study will analyze longitudinal, multivariate data in order to identify associations between professional development opportunities for teachers, administrators, and parents, their use of resources to support their own learning and that of students, middle school teachers’ instructional practices, and measures of student learning.

Evolution Readiness: A Modeling Approach

This project uses computer-based models of interacting organisms and their environments to support a learning progression leading to an appreciation of the theory of evolution and evidence that supports it. The project has created a research-based curriculum centered on progressively complex models that exhibit emergent behavior. The project will help improve the teaching of complex scientific topics and provide a reliable means of directly assessing students' conceptual understanding and inquiry skills.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
Funding Period: 
Mon, 09/01/2008 to Wed, 08/31/2011
Project Evaluator: 
Philip Benincasa

CLUSTER: Investigating a New Model Partnership for Teacher Preparation (Collaborative Research: Steinberg)

This project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. The study is designed to examine and document the effect of this integrated program on the production of urban science teachers. This study will also research the impact of internships in science centers on improving classroom science teaching in urban high schools.

Award Number: 
Funding Period: 
Sat, 04/01/2006 to Thu, 03/31/2011
Full Description: 

            CLUSTER (Collaboration for Leadership in Urban Science Teaching, Evaluation and Research) is an NSF-funded TPC project. Its partners are The City College of New York (CCNY), New York Hall of Science (NYHS), and City University of New York’s Center for Advanced Study in Education (CASE). It aims to develop and research a model designed to increase and improve the pool of secondary science teachers who reflect the ethnic distribution of city students and who are prepared to implement inquiry-based science instruction.

            CLUSTER Fellows are undergraduate science majors in New York City. They are recruited, trained, and certified to teach science in New York City middle and high schools. They participate both as students in the CCNY Teacher Education Program and as Explainers in the NYHS Science Career Ladder. Their experiences in class and at the NYHS are integrated and guided by a conceptual framework, which emphasizes science as an active process of discovery where ideas are developed and constructed through meaningful experience.

            CLUSTER aims to produce generalizable knowledge of interest to the field regarding the growth and development of perspective teachers in an experiential training program and to assess the impact and value of the CLUSTER model.


Subscribe to Partnering