A Training Ground for Women of Color in STEM: Spelman College Tackles the STEM Pipeline as a Social Justice Issue
Paper from the 2016 Advancing Social Justice from Classroom to Community Conference.
Paper from the 2016 Advancing Social Justice from Classroom to Community Conference.
Computational algorithmic thinking (CAT) is the ability to design, implement, and assess the implementation of algorithms to solve a range of problems. Supporting Computational Algorithmic Thinking (SCAT) is a longitudinal project that explores the development of CAT capabilities by guiding African American middle-school girls through the iterative game design cycle, resulting in a set of complex games around broad themes.
This paper explores African American middle-school girls' perspectives of their experience with the Supporting Computational Algorithmic Thinking (SCAT) project and perceptions of themselves as game designers.
Computational algorithmic thinking (CAT) is the ability to design, implement, and assess the implementation of algorithms to solve a range of problems. It involves identifying and understanding a problem, articulating an algorithm or set of algorithms in the form of a solution to the problem, implementing that solution in such a way that the solution solves the problem, and evaluating the solution based on some set of criteria.
This article explores middle school girls' reflections about the difficulties they faced while using computational algorithmic thinking capabilities as they engaged in collaborative game design for social change. Authors focus on how these difficulties changed over the course of three years as well as new difficulties that emerged from year to year as girls become more expert game designers and computational algorithmic thinkers.
Much of the research in science education that explores the influence of a racial and gendered identity on science, technology, engineering, and mathematics (STEM) engagement for Black women situate their identities primarily as responses to the oppression and struggles they face in STEM. In this study, we use Phenomenological Variant Ecological Systems Theory as a strengths‐based approach to investigate 10 undergraduate Black women’s perceptions of race and gender on their STEM identity development and engagement.
In this study, authors use Phenomenological Variant Ecological Systems Theory as a strengths‐based approach to investigate 10 undergraduate Black women’s perceptions of race and gender on their STEM identity development and engagement.
Computational algorithmic thinking (CAT) is the ability to design, implement, and assess the implementation of algorithms to solve a range of problems. It involves identifying and understanding a problem, articulating an algorithm or set of algorithms in the form of a solution to the problem, implementing that solution in such a way that it solves the problem, and evaluating the solution based on some set of criteria. CAT has roots in Mathematics, through problem solving and algorithmic thinking. CAT lies at the heart of Computer Science, which is defined as the study of algorithms.
This article introduces CAT as explored through the Supporting Computational Algorithmic Thinking (SCAT) project, an ongoing longitudinal between-subjects research project and enrichment program that guides African-American middle school girls (SCAT Scholars) through the iterative game design cycle resulting in a set of complex games around broad themes.
The purpose of this study was to develop and validate a survey of opportunities to participate (OtP) in science that will allow educators and researchers to closely approximate the types of learning opportunities students have in science classrooms. Additionally, we examined whether and how opportunity gaps in science learning may exist across schools with different socioeconomic levels. The OtP in science survey consists of four dimensions that include acquiring foundational knowledge, planning an investigation, conducting an investigation, and using evidence to communicate findings.
The purpose of this study was to develop and validate a survey of opportunities to participate (OtP) in science that will allow educators and researchers to closely approximate the types of learning opportunities students have in science classrooms.
Making sense of fractions can be challenging for students with learning disabilities. Dr. Jessica Hunt of North Carolina State University studies how these children think and learn and is developing novel teaching methods that facilitate mathematics learning for this underserved population.
Dr. Jessica Hunt studies how these children think and learn and is developing novel teaching methods that facilitate mathematics learning for students with learning disabilities.
Economically disadvantaged and underrepresented high school students in many urban, rural, and small suburban communities don’t have access to Advanced Placement® (AP®) courses either because of a lack of trained teachers, limited or no AP program, or a school history of low participation. Physics is often a “gate keeper” course to entry into physical science, technology, engineering and mathematics (STEM) careers and academic programs.
Project Accelerate is a partnership program between Boston University (BU) and the nation’s high schools combining the supportive infrastructures from the students’ traditional school with a highly interactive private edX online instructional tool to bring a College Board accredited AP Physics 1 course to schools not offering this opportunity. During the 2015-16 academic year, Boston University piloted this model with four Boston Public School (BPS) high schools and three small suburban high schools. During the first year of the pilot, students enrolled in Project Accelerate outperformed their peer groups enrolled in traditional AP Physics 1 classrooms.
Case studies from the FAACT project.
Case Studies from the FAACT project.
Understand students’ fraction concepts through interview tasks. Includes tasks and guide to record student thinking.
Understand students’ fraction concepts through interview tasks. Includes tasks and guide to record student thinking.