Classroom Practice

Development of an Observation Protocol for Teachers' Culturally and Linguistically Responsive Science Instruction

This study is part of a larger project on culturally and linguistically responsive instruction for multilingual learners (MLs) in biology (CLIMB), aimed at enhancing MLs’ engagement in science practices, biology content, and language development. We developed the CLIMB observation protocol to capture how teachers implement responsive instruction, integrating language development, biology content, and science practices.

Author/Presenter

Niki M. Koukoulidis

Mark. B Pacheco

Julie C. Brown

Jinnie Shin

Lead Organization(s)
Year
2025
Short Description

This study is part of a larger project on culturally and linguistically responsive instruction for multilingual learners (MLs) in biology (CLIMB), aimed at enhancing MLs’ engagement in science practices, biology content, and language development. We developed the CLIMB observation protocol to capture how teachers implement responsive instruction, integrating language development, biology content, and science practices. The protocol is comprised of six elements that align with research-backed practices to support MLs: Attention to Language, Multiple Modalities, Collaboration, Affirming Identities, Funds of Knowledge, and Sociopolitical Consciousness.

Developing Science Classroom Expectations That Encourage Risk-Taking for Learning Science Together

Reform-oriented science classrooms encourage environments in which students engage in a collective enterprise of making sense of their science ideas together. Teachers who strive for these sorts of environments support students in collaboratively constructing and answering their own questions about phenomena and making sense of competing ideas together.

Author/Presenter

Jessica L. Alzen

Jason Y. Buell

Kelsey Edwards

Chris D. Griesemer

Yang Zhang

Cynthia Passmore

William R. Penuel

Brian J. Reiser

Year
2025
Short Description

This study practically addresses some key challenges teachers face in enacting reform-oriented science teaching and offers suggestions for how continued research regarding norms and uncertainty can continue to further science reform efforts.

Connecting Expertise in Noticing Children’s Mathematical Thinking and Conducting Whole-Class Discussions

We extend research that connects teacher noticing expertise and instructional quality by providing rich illustrations of these connections at three levels of noticing expertise. Grounded in a vision of teaching that is responsive to children’s mathematical thinking, we investigated connections between teachers’ expertise in noticing children’s thinking and their centering of children’s thinking in whole-class discussions. We showcase three upper elementary school teachers as focal teachers, each with a different level of noticing expertise.

Author/Presenter

Victoria R. Jacobs

Susan B. Empson

Year
2025
Short Description

Grounded in a vision of teaching that is responsive to children’s mathematical thinking, we investigated connections between teachers’ expertise in noticing children’s thinking and their centering of children’s thinking in whole-class discussions. This study provides insight into the importance of expertise in teacher noticing for whole-class discussions while also illustrating the mathematical and pedagogical richness of the details of children’s mathematical thinking.

An Activity-based Perspective on Mathematical Authority

In this mixed-methods study, we introduce an activity-based perspective on mathematical authority that considers who leads mathematical activities in a classroom. Our framework for mathematical authority extends existing research that focuses primarily on Authoring mathematical ideas to include the activities of Visualizing and Speaking. Using data from 129 lessons, we identified six authority structures that reflect consistencies in how mathematical authority was distributed across Authoring, Speaking, and Visualizing.

Author/Presenter

Jessica Pierson Bishop

Michael D. Hicks

Christina Koehne

Mai Bui

Alexander White

Lead Organization(s)
Year
2025
Short Description

In this mixed-methods study, we introduce an activity-based perspective on mathematical authority that considers who leads mathematical activities in a classroom. Our framework for mathematical authority extends existing research that focuses primarily on Authoring mathematical ideas to include the activities of Visualizing and Speaking.

Textbooks as a Resource for Teaching Mathematics Through Problem Posing: Catalyzing Instructional Change

Research has shown that teaching mathematics through problem posing, or problem-posing based learning (P-PBL), is a student-centered instructional approach that can improve students’ cognitive and affective aspects of learning. However, since textbooks continue to include very few opportunities for problem posing, researchers have been working to support teachers to integrate problem posing into classroom instruction, drawing on textbooks as a resource.

Author/Presenter

Stephen Hwang

Jaepil Han

Faith Muirhead

Amy Brown

Matthew Melville

Jinfa Cai

Lead Organization(s)
Year
2025
Short Description

Research has shown that teaching mathematics through problem posing, or problem-posing based learning (P-PBL), is a student-centered instructional approach that can improve students’ cognitive and affective aspects of learning. However, since textbooks continue to include very few opportunities for problem posing, researchers have been working to support teachers to integrate problem posing into classroom instruction, drawing on textbooks as a resource. In this paper, we describe how teachers in the P-PBL Project have engaged in instructional change with support from researchers around a high-quality middle school mathematics textbook series.

Fostering Critical Consciousness: A Systematic Review of K-12 Teachers’ Integrations of Sociopolitical Issues in Science and Mathematics Classrooms

Efforts towards providing inclusive science and mathematics education for marginalized students are increasingly found in literature advocating for equity-oriented instruction through supporting students’ critical consciousness. Despite a growing body of research centering on teachers’ development of culturally relevant pedagogies, studies examining how teachers support students’ critical consciousness development are scarce in the context of science and mathematics education.

Author/Presenter

Sheila K. Castro

Julie C. Brown

Kent J. Crippen

Lead Organization(s)
Year
2025
Short Description

Efforts towards providing inclusive science and mathematics education for marginalized students are increasingly found in literature advocating for equity-oriented instruction through supporting students’ critical consciousness. Despite a growing body of research centering on teachers’ development of culturally relevant pedagogies, studies examining how teachers support students’ critical consciousness development are scarce in the context of science and mathematics education. Thus, this systematic review uses empirical literature on critical consciousness to explore teachers’ experiences integrating sociopolitical issues into their science and mathematics classrooms.

Noticing in the Midst of Building on a Critical Event

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Keith R. Leatham

Blake E. Peterson

Year
2025
Short Description

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher. We draw on a previously developed framework to help teachers identify such contributions, those referred to as a mathematically significant pedagogical opportunity to build on student thinking (MOST).

Noticing in the Midst of Building on a Critical Event

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Keith R. Leatham

Blake E. Peterson

Year
2025
Short Description

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher. We draw on a previously developed framework to help teachers identify such contributions, those referred to as a mathematically significant pedagogical opportunity to build on student thinking (MOST).

Noticing in the Midst of Building on a Critical Event

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher.

Author/Presenter

Shari L. Stockero

Laura R. Van Zoest

Keith R. Leatham

Blake E. Peterson

Year
2025
Short Description

Research on teachers’ noticing of student mathematical thinking has typically focused on how a teacher attends to, interprets, and determines a response to an individual student contribution in isolation from the broader mathematical classroom context. This research focus is not nuanced enough, however, to fully account for the complex noticing required of a teacher engaged in responsive teaching. To support teachers in enacting responsive teaching, it is important to have a way to distinguish high-leverage student contributions from among the many contributions available to a teacher. We draw on a previously developed framework to help teachers identify such contributions, those referred to as a mathematically significant pedagogical opportunity to build on student thinking (MOST).

Exploring the Attending and Interpretation of Three Science and Engineering Practices Among Secondary Science Teachers

This study explored secondary science teachers’ attending and interpretation of three science and engineering practices (SEPs) occurring in a classroom setting. This data were further examined to see if teaching experience and disciplinary area influenced the secondary science teachers attending and interpretation of the SEPs. The data collection process involved having teachers talk about the science instruction they viewed in short videos.

Author/Presenter

Yuxi Huang

Julie A. Luft

Hong H. Tran

Joseph J. Deluca

José M. Pavez

Brooke A. Whitworth

Year
2025
Short Description

This study explored secondary science teachers’ attending and interpretation of three science and engineering practices (SEPs) occurring in a classroom setting. This data were further examined to see if teaching experience and disciplinary area influenced the secondary science teachers attending and interpretation of the SEPs.