An Architecture of Intensification: Building a Comprehensive Program for Struggling Students in Double-Period Algebra Classes

This project is carrying out a research and development initiative to increase the success rates of our most at-risk high school students—ninth-grade students enrolled in algebra classes but significantly underprepared for high school mathematics. It will also result in new understandings about effective approaches for teaching mathematics to struggling students and about effective ways for implementing these approaches at scale, particularly in urban school districts.

Lead Organization(s): 
Award Number: 
0918434
Funding Period: 
Tue, 09/01/2009 - Thu, 03/01/2012
Project Evaluator: 
Inverness Research Inc.
Full Description: 

Intensified Algebra I, a comprehensive program used in an extended-time algebra class, helps students who are one to two years behind in mathematics become successful in algebra. It is a research and development initiative of the Charles A. Dana Center at The University of Texas at Austin, the Learning Sciences Research Institute at the University of Illinois at Chicago, and Agile Mind, that transforms the teaching of algebra to students who struggle in mathematics. Central to the program is the idea that struggling students need a powerful combination of a challenging curriculum, cohesive, targeted supports, and additional well-structured classroom time. Intensified Algebra I seeks to addresses the need for a robust Algebra I curriculum with embedded, efficient review and repair of foundational mathematical skills and concepts. It aims to address multiple dimensions of learning mathematics, including social, affective, linguistic, and cognitive. Intensified Algebra I uses an asset-based approach that builds on students’ strengths and helps students to develop academic skills and identities by engaging them in the learning experience. The program is designed to help struggling students succeed in catching up to their peers, equipping them to be successful in Algebra I and their future mathematics and science courses.

Syndicate content