Science

From Experience to Explanation: An Analysis of Students’ Use of a Wildfire Simulation

This study employs the Experiential Learning Theory framework to investigate students’ use of a wildfire simulation. We analyzed log files automatically generated by middle and high school students (n = 1515) as they used a wildfire simulation and answered associated prompts in three simulation-based tasks.

Author/Presenter

Trudi Lord

Paul Horwitz

Amy Pallant

Christopher Lore

Lead Organization(s)
Year
2024
Short Description

This study employs the Experiential Learning Theory framework to investigate students’ use of a wildfire simulation. We analyzed log files automatically generated by middle and high school students (n = 1515) as they used a wildfire simulation and answered associated prompts in three simulation-based tasks.

Developing Elementary Teachers’ Climate Change Knowledge and Self-efficacy for Teaching Climate Change Using Learning Technologies

Elementary teachers require support through professional learning activities to enhance their climate change literacy and bolster their self-efficacy for teaching climate change. This study explores methods for supporting in-service elementary teachers’ self-efficacy in climate change teaching by examining the impact of professional learning activities that incorporate learning technologies on climate change literacy.

Author/Presenter

Amal Ibourk

Lauren Wagner

Khadija Zogheib

Lead Organization(s)
Year
2024
Short Description

Elementary teachers require support through professional learning activities to enhance their climate change literacy and bolster their self-efficacy for teaching climate change. This study explores methods for supporting in-service elementary teachers’ self-efficacy in climate change teaching by examining the impact of professional learning activities that incorporate learning technologies on climate change literacy.

Leveraging Uncertainty as a Means of Facilitating Sensemaking Within a Digital Wildfire Curriculum

The changing landscape of geoscience learning has initiated growing interest in engaging science learners with climate data. One approach to teaching climate is the application of broadly accessible digital science curricula, which often include data tools such as visualizations, data representations, and simulations embedded within digital science curricula. We are specifically interested in how students and teachers grapple with scientific uncertainty in digital curricula.

Author/Presenter

Brandin Conrath

Amy Voss Farris

Scott McDonald

Year
2024
Short Description

The changing landscape of geoscience learning has initiated growing interest in engaging science learners with climate data. One approach to teaching climate is the application of broadly accessible digital science curricula, which often include data tools such as visualizations, data representations, and simulations embedded within digital science curricula. We are specifically interested in how students and teachers grapple with scientific uncertainty in digital curricula. Our paper therefore examines how a 7th grade science class and their teacher leverage moments of uncertainty in their work within a digital geohazard curriculum to learn about wildfire risk and impact.

Employing Automatic Analysis Tools Aligned to Learning Progressions to Assess Knowledge Application and Support Learning in STEM

We discuss transforming STEM education using three aspects: learning progressions (LPs), constructed response performance assessments, and artificial intelligence (AI). Using LPs to inform instruction, curriculum, and assessment design helps foster students’ ability to apply content and practices to explain phenomena, which reflects deeper science understanding. To measure the progress along these LPs, performance assessments combining elements of disciplinary ideas, crosscutting concepts and practices are needed.

Author/Presenter

Leonora Kaldaras

Kevin Haudek

Joseph Krajcik

Year
2024
Short Description

We discuss transforming STEM education using three aspects: learning progressions (LPs), constructed response performance assessments, and artificial intelligence (AI). Using LPs to inform instruction, curriculum, and assessment design helps foster students’ ability to apply content and practices to explain phenomena, which reflects deeper science understanding. To measure the progress along these LPs, performance assessments combining elements of disciplinary ideas, crosscutting concepts and practices are needed. However, these tasks are time-consuming and expensive to score and provide feedback for. Artificial intelligence (AI) allows to validate the LPs and evaluate performance assessments for many students quickly and efficiently.

Combining Natural Language Processing with Epistemic Network Analysis to Investigate Student Knowledge Integration within an AI Dialog

In this study, we used Epistemic Network Analysis (ENA) to represent data generated by Natural Language Processing (NLP) analytics during an activity based on the Knowledge Integration (KI) framework. The activity features a web-based adaptive dialog about energy transfer in photosynthesis and cellular respiration. Students write an initial explanation, respond to two adaptive prompts in the dialog, and write a revised explanation. The NLP models score the KI level of the initial and revised explanations. They also detect the ideas in the explanations and the dialog responses.

Author/Presenter

Weiying Li

Hsin-Yi Chang

Allison Bradford

Libby Gerard

Marcia C. Linn

Year
2024
Short Description

In this study, we used Epistemic Network Analysis (ENA) to represent data generated by Natural Language Processing (NLP) analytics during an activity based on the Knowledge Integration (KI) framework. The activity features a web-based adaptive dialog about energy transfer in photosynthesis and cellular respiration.

What Should We Investigate? Using a Classroom Decomposition Chamber to Support the Development of Investigation Questions

In this article, we describe how we use classroom phenomena to help fifth grade students develop testable questions and productive investigations. Engaging students in observing and seeking to explain a classroom decomposition chamber has helped them to engage more successfully in the science and engineering practices (SEPs) of asking questions, planning and carrying out investigations, and constructing explanations.

Author/Presenter

Eve Manz

Annabel Stoler

Lorin Federico

Samantha Patton

Lindsay Weaver

Genelle Diaz Silveira

Souhaila Nassar

Lead Organization(s)
Year
2024
Short Description

In this article, we describe how we use classroom phenomena to help fifth grade students develop testable questions and productive investigations. Engaging students in observing and seeking to explain a classroom decomposition chamber has helped them to engage more successfully in the science and engineering practices (SEPs) of asking questions, planning and carrying out investigations, and constructing explanations.

Ten Years of Three-Dimensional Science and Its Implementation in the Secondary Classroom: A Scoping Review

In the decade following the release of the Next-Generation Science Standards in the United States, many efforts have occurred to reform K-12 science teaching. While not all states have adopted NGSS, 48 of 50 have adopted standards that are consistent with the underlying philosophy and research base of NGSS: three-dimensional (3D) science. This scoping review explores the research activity on classroom implementation of 3D Science in secondary schools in the US.

Author/Presenter

Clara M. Smith

Heather M. Leary

Jamie L. Jensen

Rebecca L. Sansom

Lead Organization(s)
Year
2024
Short Description

In the decade following the release of the Next-Generation Science Standards in the United States, many efforts have occurred to reform K-12 science teaching. While not all states have adopted NGSS, 48 of 50 have adopted standards that are consistent with the underlying philosophy and research base of NGSS: three-dimensional (3D) science. This scoping review explores the research activity on classroom implementation of 3D Science in secondary schools in the US.

Integrating the Plate Tectonic and Rock Genesis Systems for Secondary School Students

This paper describes how plate tectonics and rock genesis, two topics that are typically addressed separately in secondary Earth science classes, can be taught together as an integrated system. We define the TecRocks Reasoning Framework, developed to support student reasoning about rock formation situated in the context of plate tectonics. We also explain how we leveraged the framework in the designs of a new curriculum, interactive computer simulation, and assessment instrument. We show how the instrument was used to evaluate the curriculum, which included the computer simulation.

Author/Presenter

Amy Pallant

Christopher Lore

Hee-Sun Lee

Stephanie Seevers

Trudi Lord

Lead Organization(s)
Year
2024
Short Description

This paper describes how plate tectonics and rock genesis, two topics that are typically addressed separately in secondary Earth science classes, can be taught together as an integrated system.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.

Unpacking the Nuances: An Exploratory Multilevel Analysis on the Operationalization of Integrated STEM Education and Student Attitudinal Change

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors.

Author/Presenter

Benny Mart R. Hiwatig

Gillian H. Roehrig

Mark D. Rouleau

Lead Organization(s)
Year
2024
Short Description

Integrated STEM education (iSTEM) is recognized for its potential to improve students’ scientific and mathematical knowledge, as well as to nurture positive attitudes toward STEM, which are essential for motivating students to consider STEM-related careers. While prior studies have examined the relationship between specific iSTEM activities or curricula and changes in student attitudes, research is lacking on how the aspects of iSTEM are operationalized and their influence on shifts in student attitudes towards STEM, especially when considering the role of demographic factors. Addressing this gap, our study applied multilevel modeling to analyze how different iSTEM aspects and demographic variables predict changes in student attitudes.