Middle

Infect, Attach or Bounce off?: Linking Real Data and Computational Models to Make Sense of the Mechanisms of Diffusion

This study explores how the interplay between data and model design shifts 6th graders’ students' ideas about diffusion as they build a range of models (“paper and pencil” and computational models). We present a new web-based environment and approach that integrates model-based and data-based features in the same display which facilitates the comparison of models and real-world data. Further, we illustrate how this environment and approach lead students to converge on one canonical scientific model.

Author/Presenter

Tamar Fuhrmann

Aditi Wagh

Adelmo Eloy

Jacob Wolf

Engin Bumbacher

Michelle Wilkerson

Paulo Blikstein

Year
2022
Short Description

This study explores how the interplay between data and model design shifts 6th graders’ students' ideas about diffusion as they build a range of models (“paper and pencil” and computational models). We present a new web-based environment and approach that integrates model-based and data-based features in the same display which facilitates the comparison of models and real-world data.

MoDa: Designing a Tool to Interweave Computational Modeling with Real-world Data Analysis for Science Learning in Middle School

Coordinating modeling and real-world data is central to building scientific theories. This paper examines how a complementary focus on modeling and data contributed to 8th grade students’ learning of mechanisms underlying wildfire smoke spread in MoDa, a web-based environment that integrates computational modeling side-by-side with real-world data for comparison and validation. Epistemic network analysis of student responses in pre-post tests revealed a shift from primarily macro-level explanations to explanations that integrated macro and micro-level explanations of the phenomenon.

Author/Presenter
Aditi Wagh

Tamar Fuhrmann

Adelmo Antonio da Silva Eloy

Jacob Wolf

Engin Bumbacher

Paulo Blikstein

Michelle Wilkerson

Year
2022
Short Description

Coordinating modeling and real-world data is central to building scientific theories. This paper examines how a complementary focus on modeling and data contributed to 8th grade students’ learning of mechanisms underlying wildfire smoke spread in MoDa, a web-based environment that integrates computational modeling side-by-side with real-world data for comparison and validation.

Exploring the Potential of an Online Suite of Practice-Based Activities for Supporting Preservice Elementary Teachers in Learning How to Facilitate Argumentation-Focused Discussions in Mathematics and Science

This study explored the use of a three-part suite of practice-based activities -- one- and two-player online simulations, an avatar-based simulation, and a virtual teaching simulator—for supporting preservice teachers in learning how to facilitate argumentation-focused discussions in elementary mathematics and science. We share findings from analysis of survey data examining four elementary teacher educators’ perceptions about using these activities within their respective elementary methods courses.

Author/Presenter

Lead Organization(s)
Year
2022
Short Description

This study explored the use of a three-part suite of practice-based activities -- one- and two-player online simulations, an avatar-based simulation, and a virtual teaching simulator—for supporting preservice teachers in learning how to facilitate argumentation-focused discussions in elementary mathematics and science.

Eliciting Learner Knowledge: Enabling Focused Practice Through an Open-Source Online Tool

Eliciting and interpreting students’ ideas are essential skills in teaching, yet pre-service teachers (PSTs) rarely have adequate opportunities to develop these skills. In this study, we examine PSTs’ patterns of discourse and perceived learning through engaging in an interactive digital simulation called Eliciting Learner Knowledge (ELK). ELK is a seven-minute, chat-based virtual role play between a PST playing a “teacher” and a PST playing a “student” where the goal is for the teacher to find out what the student knows about a topic.

Author/Presenter

Griffin Leonard

Jamie N. Mikeska

Pamela S. Lottero-Perdue

Adam V. Maltese

Giancarlo Pereira

Garron Hillaire

Rick Waldron

Rachel Slama

Justin Reich

Lead Organization(s)
Year
2022
Short Description

Eliciting and interpreting students’ ideas are essential skills in teaching, yet pre-service teachers (PSTs) rarely have adequate opportunities to develop these skills. In this study, we examine PSTs’ patterns of discourse and perceived learning through engaging in an interactive digital simulation called Eliciting Learner Knowledge (ELK). ELK is a seven-minute, chat-based virtual role play between a PST playing a “teacher” and a PST playing a “student” where the goal is for the teacher to find out what the student knows about a topic.

“Unnatural How Natural It Was”: Using a Performance Task and Simulated Classroom for Preservice Secondary Teachers to Practice Engaging Student Avatars in Scientific Argumentation

Facilitating discussions is a key approach that science teachers use to engage students in scientific argumentation. However, learning how to facilitate argumentation-focused discussions is an ambitious teaching practice that can be difficult to learn how to do well, especially for preservice teachers (PSTs) who typically have limited opportunities to tryout and refine this teaching practice.

Author/Presenter

Jamie N. Mikeska

Calli Shekell

Jennifer Dix

Pamela S. Lottero-Perdue

Lead Organization(s)
Year
2022
Short Description

Facilitating discussions is a key approach that science teachers use to engage students in scientific argumentation. However, learning how to facilitate argumentation-focused discussions is an ambitious teaching practice that can be difficult to learn how to do well, especially for preservice teachers (PSTs) who typically have limited opportunities to tryout and refine this teaching practice. This study examines secondary PSTs’ perceptions and engagement with a science performance task—used within an online, simulated classroom consisting of five middle school student avatars—to practice this ambitious teaching practice.

AI for Tackling STEM Education Challenges

Artificial intelligence (AI), an emerging technology, finds increasing use in STEM education and STEM education research (e.g., Zhai et al., 2020b; Ouyang et al., 2022; Linn et al., 2023). AI, defined as a technology to mimic human cognitive behaviors, holds great potential to address some of the most challenging problems in STEM education (Neumann and Waight, 2020; Zhai, 2021). Amongst these is the challenge of supporting all students to meet the vision for science learning in the 21st century laid out, for example in the U.S.

Author/Presenter

Xiaoming Zhai

Knut Neumann

Joseph Krajcik

Year
2023
Short Description

To best support students in developing competence, assessments that allow students to use knowledge to solve challenging problems and make sense of phenomena are needed. These assessments need to be designed and tested to validly locate students on the learning progression and hence provide feedback to students and teachers about meaningful next steps in their learning. Yet, such tasks are time-consuming to score and challenging to provide students with appropriate feedback to develop their knowledge to the next level.

AI for Tackling STEM Education Challenges

Artificial intelligence (AI), an emerging technology, finds increasing use in STEM education and STEM education research (e.g., Zhai et al., 2020b; Ouyang et al., 2022; Linn et al., 2023). AI, defined as a technology to mimic human cognitive behaviors, holds great potential to address some of the most challenging problems in STEM education (Neumann and Waight, 2020; Zhai, 2021). Amongst these is the challenge of supporting all students to meet the vision for science learning in the 21st century laid out, for example in the U.S.

Author/Presenter

Xiaoming Zhai

Knut Neumann

Joseph Krajcik

Year
2023
Short Description

To best support students in developing competence, assessments that allow students to use knowledge to solve challenging problems and make sense of phenomena are needed. These assessments need to be designed and tested to validly locate students on the learning progression and hence provide feedback to students and teachers about meaningful next steps in their learning. Yet, such tasks are time-consuming to score and challenging to provide students with appropriate feedback to develop their knowledge to the next level.

AI for Tackling STEM Education Challenges

Artificial intelligence (AI), an emerging technology, finds increasing use in STEM education and STEM education research (e.g., Zhai et al., 2020b; Ouyang et al., 2022; Linn et al., 2023). AI, defined as a technology to mimic human cognitive behaviors, holds great potential to address some of the most challenging problems in STEM education (Neumann and Waight, 2020; Zhai, 2021). Amongst these is the challenge of supporting all students to meet the vision for science learning in the 21st century laid out, for example in the U.S.

Author/Presenter

Xiaoming Zhai

Knut Neumann

Joseph Krajcik

Year
2023
Short Description

To best support students in developing competence, assessments that allow students to use knowledge to solve challenging problems and make sense of phenomena are needed. These assessments need to be designed and tested to validly locate students on the learning progression and hence provide feedback to students and teachers about meaningful next steps in their learning. Yet, such tasks are time-consuming to score and challenging to provide students with appropriate feedback to develop their knowledge to the next level.

Applying Machine Learning to Automatically Assess Scientific Models

Involving students in scientific modeling practice is one of the most effective approaches to achieving the next generation science education learning goals. Given the complexity and multirepresentational features of scientific models, scoring student-developed models is time- and cost-intensive, remaining one of the most challenging assessment practices for science education. More importantly, teachers who rely on timely feedback to plan and adjust instruction are reluctant to use modeling tasks because they could not provide timely feedback to learners.

Author/Presenter

Xiaoming Zhai

Peng He

Joseph Krajcik

Year
2022
Short Description

Involving students in scientific modeling practice is one of the most effective approaches to achieving the next generation science education learning goals. Given the complexity and multirepresentational features of scientific models, scoring student-developed models is time- and cost-intensive, remaining one of the most challenging assessment practices for science education. More importantly, teachers who rely on timely feedback to plan and adjust instruction are reluctant to use modeling tasks because they could not provide timely feedback to learners. This study utilized machine learning (ML), the most advanced artificial intelligence (AI), to develop an approach to automatically score student-drawn models and their written descriptions of those models.

Applying Machine Learning to Automatically Assess Scientific Models

Involving students in scientific modeling practice is one of the most effective approaches to achieving the next generation science education learning goals. Given the complexity and multirepresentational features of scientific models, scoring student-developed models is time- and cost-intensive, remaining one of the most challenging assessment practices for science education. More importantly, teachers who rely on timely feedback to plan and adjust instruction are reluctant to use modeling tasks because they could not provide timely feedback to learners.

Author/Presenter

Xiaoming Zhai

Peng He

Joseph Krajcik

Year
2022
Short Description

Involving students in scientific modeling practice is one of the most effective approaches to achieving the next generation science education learning goals. Given the complexity and multirepresentational features of scientific models, scoring student-developed models is time- and cost-intensive, remaining one of the most challenging assessment practices for science education. More importantly, teachers who rely on timely feedback to plan and adjust instruction are reluctant to use modeling tasks because they could not provide timely feedback to learners. This study utilized machine learning (ML), the most advanced artificial intelligence (AI), to develop an approach to automatically score student-drawn models and their written descriptions of those models.