Pedagogy

Conceptualizing Important Facets of Teacher Responses to Student Mathematical Thinking

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach.
Author/Presenter

Laura R. Van Zoest

Blake E. Peterson

Annick O. T. Rougée

Shari L. Stockero

Keith R. Leatham

Ben Freeburn

Year
2021
Short Description

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach. We conclude by making several further observations about the potential versatility and power in articulating units of analysis and developing and applying tools that attend to these facets when conducting research on teacher responses.

Conceptualizing Important Facets of Teacher Responses to Student Mathematical Thinking

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach.
Author/Presenter

Laura R. Van Zoest

Blake E. Peterson

Annick O. T. Rougée

Shari L. Stockero

Keith R. Leatham

Ben Freeburn

Year
2021
Short Description

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach. We conclude by making several further observations about the potential versatility and power in articulating units of analysis and developing and applying tools that attend to these facets when conducting research on teacher responses.

Conceptualizing Important Facets of Teacher Responses to Student Mathematical Thinking

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach.
Author/Presenter

Laura R. Van Zoest

Blake E. Peterson

Annick O. T. Rougée

Shari L. Stockero

Keith R. Leatham

Ben Freeburn

Year
2021
Short Description

We argue that progress in the area of research on mathematics teacher responses to student thinking could be enhanced were the field to attend more explicitly to important facets of those responses, as well as to related units of analysis. We describe the Teacher Response Coding scheme (TRC) to illustrate how such attention might play out, and then apply the TRC to an excerpt of classroom mathematics discourse to demonstrate the affordances of this approach. We conclude by making several further observations about the potential versatility and power in articulating units of analysis and developing and applying tools that attend to these facets when conducting research on teacher responses.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Clarifiable Ambiguity in Classroom Mathematics Discourse

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

Author/Presenter

Blake E. Peterson

Keith R. Leatham

Lindsay M. Merrill

Laura R. Van Zoest

Shari L. Stockero

Year
2020
Short Description

Ambiguity is a natural part of communication in a mathematics classroom. In this paper, a particular subset of ambiguity is characterized as clarifiable. Clarifiable ambiguity in classroom mathematics discourse is common, frequently goes unaddressed, and unnecessarily hinders in-the-moment communication because it likely could be made more clear in a relatively straightforward way if it were attended to. We argue for deliberate attention to clarifiable ambiguity as a critical aspect of attending to meaning and as a necessary precursor to productive use of student mathematical thinking.

“Teaching Them How to Fish”: Learning to Learn and Teach Responsively

The Responsive Math Teaching (RMT) project’s 3-year model for professional development introduces teachers to a new instructional model through a full year of monthly Math Circles, where they experience problem solving and productive struggle from the student perspective while working through challenging open-ended tasks, engaging in mathematical discussions, and reflecting on the process. This paper examines teachers’ views of what they learned from this experience and how it affected both their instructional practices and their visions of mathematics teaching and learning.
Author/Presenter

Caroline B. Ebby

Brittany Hess

Lizzy Pecora

Jennifer Valerio

Lead Organization(s)
Year
2021
Short Description

The Responsive Math Teaching (RMT) project’s 3-year model for professional development introduces teachers to a new instructional model through a full year of monthly Math Circles, where they experience problem solving and productive struggle from the student perspective while working through challenging open-ended tasks, engaging in mathematical discussions, and reflecting on the process. This paper examines teachers’ views of what they learned from this experience and how it affected both their instructional practices and their visions of mathematics teaching and learning.

Design, Development, and Initial Testing of Asset-Based Intervention Grounded in Trajectories of Student Fraction Learning

One of the most relentless areas of difficulty in mathematics for children with learning disabilities (LDs) and difficulties is fractions. We report the development and initial testing of an intervention designed to increase access to and advancement in conceptual understanding. Our asset-based theory of change—a tested and confirmed learning trajectory of fraction concepts of students with LDs grounded in student-centered instruction—served as the basis for our multistage scientific design process.

Author/Presenter

Jessica H. Hunt

Kristi Martin

Andy Khounmeuang

Juanita Silva

Blain Patterson

Jasmine Welch-Ptak

Year
2020
Short Description

One of the most relentless areas of difficulty in mathematics for children with learning disabilities (LDs) and difficulties is fractions. This article reports the development and initial testing of an intervention designed to increase access to and advancement in conceptual understanding.

Using Authentic Video Clips of Classroom Instruction to Capture Teachers’ Moment-to-Moment Perceiving as Knowledge-Filtered Noticing

In this article, we report on the development of a novel, video-based measure of teachers’ moment-to-moment noticing as knowledge-filtered perception. We developed items to capture teachers’ perception of similarity of their own teaching to the teaching shown in three short video clips of authentic classroom instruction. We describe the item design and relate teachers’ moment-to-moment noticing to their reflective noticing as measured by judgements of similarity teachers provided after viewing each video.

Author/Presenter

Nicole B. Kersting

James E. Smith

Beau Vezino

Lead Organization(s)
Year
2021
Short Description

This article reports on the development of a novel, video-based measure of teachers’ moment-to-moment noticing as knowledge-filtered perception.

Different Ways to Implement Innovative Teaching Approaches at Scale

Maass, K., Cobb, P., Krainer, K., & Potari, D. (2019). Different ways to implement innovative teaching approaches at scale. Educational Studies in Mathematics, 102, 303-318.

Author/Presenter

Katja Maass

Paul Cobb

Konrad Krainer

Despina Potari

Lead Organization(s)
Year
2019
Short Description

This article discusses the implementation of innovative teaching approaches in mathematics.