Projects

09/01/2010

This project will implement and study a professional community designed to alleviate the mismatch between the expectations of student teachers in mathematics and science and their mentor in-service teachers. The project is creating a neutral forum for the exchange of perspectives on issues of pedagogy with the expectation that student teachers would implement inquiry-based science and problem-solving mathematics pedagogies with the knowledgeable support of their mentor teachers.

09/01/2010

This project is analyzing and sharing baseline data on the achievement of African American and Hispanic girls on national and state assessments. The objectives of the project are to: (1) conduct a critical analysis of achievement data for African American and Hispanic female students; (2) organize a conference featuring presentation of the data analysis and a national speaker; (3) provide STEM career information and materials; and (4) share results of the achievement data analysis.

09/01/2010

This project will develop a learning progression that characterizes how learners integrate and interrelate scientific argumentation, explanation and scientific modeling, building ever more sophisticated versions of practice over time using the three common elements of sense-making, persuading peers and developing consensus. The learning progression is constructed through students’ understanding of scientific practice as measured by their attention to generality of explanation, clarity of communication, audience understanding, evidentiary support, and mechanistic versus descriptive accounts.

09/01/2010

This is a continuing research project that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The primary products are substantiated research findings on the use of tablet computers, inscriptions, and networks in 4th/5th grade classrooms as well as models for teacher education and use.

09/01/2010

Colorado’s PhET project and Stanford’s AAALab will develop and study learning from interactive simulations designed for middle school science classrooms. Products will include 35 interactive sims with related support materials freely available from the PhET website; new technologies to collect real-time data on student use of sims; and guidelines for the development and use of sims for this age population. The team will also publish research on how students learn from sims.

08/15/2010

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

08/15/2010

The project designs and implements technologies that combine artificial intelligence in the form of intelligent tutoring systems with multimedia interfaces (i.e., an electronic science notebook and virtual labs) to support children in grades 4-5 learning science. The students use LEONARDO's intelligent virtual science notebooks to create and experiment with interactive models of physical phenomena.

08/15/2010

The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education that for over forty years introduce science, mathematics and engineering to students traditionally underrepresented in the discipline. This project examines the influences MESA activities (field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement) have on students' perception of engineering, their self-efficacy and interest in engineering, and their subsequent decisions to pursue careers in engineering.

08/15/2010

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

08/15/2010

This project is conducting a comprehensive study of professional development models designed for mathematics teachers in grades K-12. The research team will identify key constructs and frameworks within professional development programs and identify types of professional development models. The goals of the project are to encourage researchers and professional developers to reconceptualize mathematics professional development, develop a shared language, and renew discussions on effective professional development for teachers of mathematics.

08/15/2010

This project is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind.

08/15/2010

The research and educational activities of this project focus on advancing the field in the area of fraction operation algorithm development. The goal of this research is to identify core mathematical teaching practices that engage and support students in algorithmic thinking associated with fraction operations. The educational product of this work will be written educational materials that can be used to support the general population of teachers in this domain.

08/15/2010

This project conducts interdisciplinary research to advance understanding of embodied learning as it applies to STEM topics across a range of current technology-based learning environments (e.g., desktop simulations, interactive whiteboards, and 3D interactive environments). The project has two central research questions: How are student knowledge gains impacted by the degree of embodied learning and to what extent do the affordances of different technology-based learning environments constrain or support embodied learning for STEM topics?

08/15/2010

This project will bring together two promising innovations: a high school course entitled Energizing Physics and the BEAR assessment system. The goal of this study is to develop and test a formative assessment system for Energizing Physics that has the potential to enable all students to learn physics, so they can succeed in college.

08/15/2010

This project explores the potential of "Agent-Based Models" to assist learners to acquire environmental science concepts targeted in forthcoming Advanced Placement test standards. The investigators frame the research in a simulated scenario where "green" infrastructure is integrated into urban environments, and they propose how to use a new user interface strategy ("Paper-to-Parameters") that promises unique approaches for understanding the spatial and scalar relationships between simulation elements.

08/15/2010

This exploratory study develops and pilot-tests a model for improving science teaching and learning with middle school ELLs. Study goals include: (1) clarifying pedagogical constructs of language-rich science inquiry and the academic language of science and their relationships across the learning contexts of middle school science classrooms, teacher professional development and family science workshops, (2) developing and refining instruments to study these constructs in context, and (3) conducting pilot tests of the model and instruments.

08/15/2010

Twelve fifth and sixth grade science teacher specialists and their students in a high needs district in Ohio are engaged in a design-based research project within a three-year professional development effort with faculty in several departments at the University of Cincinnati to study how the engineering design process can be used effectively as a pedagogical strategy in science instruction to improve student interest, learning and skill development.

08/15/2010

This research and development project examines the impact of the Project-Based Inquiry Science (PBIS) middle school science curriculum. The research questions explored will look into efficacy, implementation, and teacher practice. A unique feature of the study’s design is an analytic focus on the conditions needed to implement the curriculum in ways that improve student learning in light of the Framework for K-12 Science Education.

08/15/2010

This research and development project develops and tests in the classroom three fifth-grade and two second-grade science units that combine both socio-cultural and socio-cognitive perspectives in order to more fully engage both students and teachers in authentic inquiry and tests the units in second- and fifth-grade classrooms.

08/15/2010

This project develops a series of interactive on-line games and investigates the effect these games have on increasing middle school science students' and teachers' knowledge and skills of scientific argumentation. There are four areas of argumentation addressed by the games: (1) understanding a claim, (2) judging the evidence about a claim based on type and quality (objectivity, reliability or validity), (3) analyzing the reasoning applied to the claim, and (4) evaluating the claim.

08/01/2010

This project develops and assesses the effectiveness of integrating three computation-based technologies into curricular modules: agent-based modeling (ABM), real-world sensing, and collaborative classroom networks. The STEM disciplines addressed are life sciences and physical sciences at middle and high school levels, specifically Evolution, Population Biology/Ecology, Kinetic Molecular Theory, and Electromagnetism.

08/01/2010

This project will explore how new mobile and web-based technologies can support content-rich nomadic inquiry; that is, science inquiry that takes place on-the-go, across integrated K-12 formal and informal settings. Students will begin the inquiry process in the classroom using curricular activities and the Zydeco web software developed in the project to help define goals and questions and to design data collection strategies and categories for use on a field trip to an informal setting.

08/01/2010

This project will adapt and study successful discourse strategies used during language arts instruction to help teachers promote mathematically-rich classroom discourse. Of special interest is the use of models to promote mathematics communication that includes English language learners (ELL) in mathematics discourse.The project will result in a full 40-hour professional development module to support mathematics discourse for Grade 2 teachers, with an emphasis on place value, multidigit addition and subtraction, and linear measurement.

07/15/2010

This project is designing, developing, and testing an innovative approach to elementary students' learning in the critical areas of multiplicative reasoning, fractions, and proportional reasoning. The project is building on the successful El'Konin-Davydov (E-D) elementary mathematics curriculum that originated in Russia to develop a curriculum framework that can be implemented in U. S. schools. The ultimate product of the research will be a rational number learning progression consisting of carefully articulated and sequenced learning goals.

07/15/2010

This project will design, develop, and test a virtual learning community (VLC) to enhance the ability of first- and fourth-grade teachers to provide mathematics education. The goal is to produce a prototype of a VLC for first- and fourth-grade Everyday Mathematics teachers that integrates three primary elements: (a) learning objects rooted in practice, such as lesson video, (b) community-building tools offered by the internet, and (c) focused content that drives teachers' professional learning in mathematics.