Development of a Cognition-Guided, Formative-Assessment-Intensive, Individualized Computer-Based Dynamic Geometry Learning System for Grades 3-8

This project is focused on creating, testing, refining, and studying a computer-based, individualized, interactive learning system for intermediate/middle school students or by teachers in classrooms. This learning system is called Individualized Dynamic Geometry Instruction and will contain four instructional modules in geometry and measurement that reflect the recommendations of the Common Core State Standards.

Project Evaluator
Jeff Shih
Full Description

Developers and researchers at Ohio State University and KCP Technologies are creating, testing, refining, and studying a computer-based, individualized, interactive learning system for intermediate/middle school students that can be used by them independently (online or offline) or by teachers in classrooms. This learning system is called Individualized Dynamic Geometry Instruction (iDGi) and will contain four instructional modules in geometry and measurement that reflect the recommendations of the Common Core State Standards (CCSS). iDGi courseware fully integrates research-based Learning Progressions (LPs) for guiding students' reasoning; formative-assessment linked to LPs; instructional sequencing that interactively adapts to students' locations in LPs; built-in student monitoring, feedback, and guidance; and research-based principles of educational media into the modules. The software platform for iDGi development is an extended version of the dynamic geometry computer environment, The Geometer's Sketchpad.

The development process follows recommendations in Douglas Clements' Curriculum Research Framework and includes sequences of development, trials with students, data collection, and revision. The research and evaluation are based on random assignment of approximately 350 students to treatment and control groups. Achievement data are collected using developer-constructed instruments with items that reflect the mathematics topics in the CCSS. Researchers explore the variability at the student, teacher, and school levels using the appropriate level of hierarchical linear models.

Commercial publishers have expressed strong interest in publishing online and offline computer versions of iDGi, an iPad version of iDGi, an online management system for iDGi, and support materials for users and teachers.

PROJECT KEYWORDS

Project Materials

Title Type Post date Sort ascending
No content available.