Preservice/Pre-service

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

Lead Organization(s): 
Award Number: 
1621325
Funding Period: 
Fri, 07/15/2016 - Wed, 06/30/2021
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project at Jackson State University will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary science and mathematics teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools. The project involves a partnership among three historically Black universities (Jackson, State University, Xavier University of Louisiana, and the University of Arkansas at Pine Bluff), and diverse urban and rural school districts in Jackson, Mississippi; New Orleans, Louisiana; and Pine Bluff Arkansas region that serve more than 175,000 students.

Participants will include 150 middle and secondary school teacher residents who will gain clinical mentored experience and develop familiarity with local schools. The 150 teacher residents supported by the program to National Board certification will obtain: state licensure/certification in science teaching, a master's degree, and initiation. The goal is to increase teacher retention and diversity rates. The research question guiding this focus is: Will training STEM graduates have a significant effect on the quality of K-12 instruction, teacher efficacy and satisfaction, STEM teacher retention, and students? Science and mathematics achievement? A quasi-experimental design will be used to evaluate project's effectiveness.

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

Preparing Teachers to Support Rich Disciplinary Discussions in Their Classrooms

Day: 
Thu

Learn about pre- or in-service teacher education activities designed to support teacher facilitation of student disciplinary discussions through enactments that illustrate teacher education activities.

Date/Time: 
2:15 pm - 3:45 pm
Session Materials: 

Often the most we know about our colleagues’ on-the-ground support of teachers is what we read in the methods sections of research articles, or what has been reified many times over in their published teacher learning materials. We rarely get to see, much less experience, one another’s approaches to supporting teachers. This session will open up the black-box of our work with teachers for discussion and scrutiny.

This session aims to 1) make visible the best-practices in teacher education/professional development activities designed to support teacher facilitation of student disciplinary discussions; and 2) provide an opportunity for panelists and participants to examine tacit assumptions about what teachers know – and need to know – regarding facilitating K-12 student discussions in math and science. The cross-disciplinary panel (i.e., two projects in science and one in math will be participating) allows us to compare mathematics and science discussions, and to use those comparisons to uncover models of teacher learning.

To begin, each research team will facilitate a 10-15 minute enactment of an illustrative professional development or teacher education activity, in which the audience will participate as teacher learners. This participation will support a subsequent discussion of the theoretical underpinnings guiding the design work of each project. The session will conclude with discussion of the challenges facing each project and brainstorming possible solutions.

Universal BEATS: Universal BioMusic Education Achievement Tier in Science

UNCG and NCSU are developing instructional resources for grades-2–5 students that infuse cutting-edge content from the emerging field of biomusic into standards-based elementary science and music curricula. The approach uses the musical sounds of nature to help students learn concepts in biology, physical science, and anthropology. Curriculum is undergoing beta-testing across North Carolina in diverse school settings.

Partner Organization(s): 
Award Number: 
0733180
Funding Period: 
Tue, 01/01/2008 - Thu, 06/30/2011
Project Evaluator: 
Amy Germuth
Full Description: 

Universal BEATS is a DRK12 exploratory project that engages a wider range of elementary school students more deeply in science through innovatively infusing concepts and methods from an emerging scientific field, BioMusic, into standards-based elementary science and music curricula. In aiming at two of the three “Grand Challenges” laid out by NSF 06-593: Discovery Research K-12—“elementary grades science” and “cutting-edge STEM content in K-12 classrooms”—Universal BEATS simultaneously leverages and extends the impact of an NSF-funded informal science exhibition, Wild Music, and an NSF-funded model Research Experiences for Teachers site. Developed by the Music Research Institute (MRI) at the University of North Carolina-Greensboro in collaboration with North Carolina State University‘s Department of Mathematics, Science, and Technology Education and the Kenan Institute for Engineering, Technology, and Science’s Kenan Fellows Program (KFP), Universal BEATS enables grades 2-5 students to explore the emerging interdisciplinary field of BioMusic. The project uses music and natural sound to explore and develop instructional resources in biodiversity, human development, neurophysiology, human evolution, cultural diversity, and the physics of sound. The goal is to provide a rich, interdisciplinary educational environment in which teachers, in partnership with leading scientists in BioMusic and a team of science and music educators, develop, pilot and refine standards-based curricula that introduce elementary-aged students to the deep roots of human music.

Universal BEATS: Universal BioMusic Education Achievement Tier in Science

CAREER: Exploring Beginning Mathematics Teachers' Career Patterns

Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1506494
Funding Period: 
Fri, 08/15/2014 - Wed, 07/31/2019
Full Description: 

Recruiting and retaining effective mathematics teachers has been emphasized in national reports as a top priority in educational policy initiatives. Research indicates that the average turnover rate is nearly 23% for beginning teachers (compared to 15% for veteran instructors); turnover rates for beginning mathematics teachers are even higher. Many mathematics teachers with three or fewer years' experience begin their careers in high-needs schools and often transfer to low-need schools at their first opportunity. This reshuffling, as effective teachers move from high- to low-need schools, exacerbates the unequal distribution of teacher quality, with important implications for disparities in student achievement. Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. Thus, it is essential to understand the features, practices, and local contexts that are relevant to beginning teachers' career decisions in order to identify relevant strategies for retention. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce. This support for an early CAREER scholar in mathematics policy will enhance capacity to address issues in the future.

This work will be guided by three research objectives, to: (1) explore patterns in mathematics teachers' career movements, comparing patterns between elementary and middle school teachers, and between high- and low-need schools; (2) compare qualifications and effectiveness of teachers on different career paths (e.g., movement in/out of school, district, field); and (3) test a conceptual model of how policy-malleable factors influence beginning math teachers' performance improvement and career movements. The PI will use large-scale federal and state longitudinal data on a cohort of teachers who were first-year teachers in 2007-08 and taught mathematics in grades 3-8. Three samples will be analyzed separately and then collectively: a nationally representative sample from the Beginning Teacher Longitudinal Study (about 870 teachers who represent a national population of nearly 85,970); about 4,220 Florida teachers; and about 2,410 North Carolina teachers. In addition, the PI will collaborate with Education Policy Initiative at Carolina (EPIC) at UNC-Chapel Hill to collect new data from the 2015-16 cohort of first-year teachers in NC (about 800 teachers) and follow them for 2 years. The new data collection will provide detailed and reliable measures on the quality of both pre- and in-service teacher supports in order to understand how they may be linked to teachers' career movements and performance.

The original award # of this project was 1350158.

CAREER: Exploring Beginning Mathematics Teachers' Career Patterns

CAREER: L-MAP: Pre-service Middle School Teachers' Knowledge of Mathematical Argumentation and Proving

This program of research will examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program?

Lead Organization(s): 
Award Number: 
1350802
Funding Period: 
Tue, 07/15/2014 - Sun, 06/30/2019
Full Description: 

The field of mathematics teacher education needs a strong understanding of pre-service teachers' knowledge about the practice of mathematical argumentation and proof, including the development of this knowledge, to effectively move pre-service teachers toward a more sophisticated understanding and enactment of this practice with their own students. The integrated research and educational activities will contribute to the knowledge base teacher education programs need to effectively prepare middle school teachers for meeting the challenges of how to make reasoning and proof an integral aspect of instructional practice. The research results have the potential to guide teacher educators and educational researchers concerned with strengthening pre-service teachers' ability to make reasoning and proving an integral aspect of school mathematics. Consequently, pre-service teachers will be better equipped to develop mathematical reasoning skills in their future students and to support their students in learning mathematics with understanding. Given this country's growing need for a competent STEM workforce, helping all students learn mathematics in a way that supports deeper understanding is a priority. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

The objective of this program of research is to examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program? This development will be studied along three dimensions: (a) pre-service teachers' own ability to formulate mathematical arguments, (b) their ability to analyze mathematical arguments, and (c) their ability to analyze situations that engage students in mathematical argumentation and proving. Cross-sectional and longitudinal studies of 60 pre-service teachers' models, or systems of interpretation, of mathematical argumentation and proof in curricular context that foster reasoning about change, proportionality and proportional relationships will be conducted to provide an understanding of the trajectory that captures how pre-service teachers develop their knowledge of mathematical argumentation and proving throughout their university mathematics preparation program and into their student teaching.

CAREER: L-MAP: Pre-service Middle School Teachers' Knowledge of Mathematical Argumentation and Proving

CAREER: Advancing Secondary Mathematics Teachers' Quantitative Reasoning

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge.

Award Number: 
1350342
Funding Period: 
Tue, 07/15/2014 - Sun, 06/30/2019
Full Description: 

Science, Technology, Engineering and Mathematics [STEM] and STEM education researchers and policy documents have directed mathematics educators at all levels to increase emphasis on quantitative reasoning so that students are prepared for continued studies in mathematics and other STEM fields. Often, teachers are not sufficiently prepared to support their students' quantitative reasoning. The products generated by this project fill a need for concrete materials at the pre-service level that embody research-based knowledge in the area of quantitative reasoning. The accessible collection of research and educational products provides a model program for changing prospective mathematics teachers' quantitative reasoning that is adoptable at other institutions across the nation. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge. Three interrelated research questions guide the project: (i) What aspects of quantitative reasoning provide support for prospective teachers' understanding of major secondary mathematics concepts such as function and algebra? (ii) How can instruction support prospective teachers' quantitative reasoning in the context of the teaching and learning of major secondary mathematics concepts such as function and algebra? (iii) How do the understandings prospective teachers hold upon entering a pre-service program support or inhibit their quantitative reasoning? Advancing Reasoning addresses these questions by enacting an iterative, multi-phase study with 200 prospective teachers enrolled in a secondary mathematics education content course over 5 years. The main phase of the study implements a series of classroom design experiments to produce knowledge on central aspects of prospective teachers' quantitative reasoning and the instructional experiences that support such reasoning. By drawing this knowledge from a classroom setting, Advancing Reasoning contributes research-based and practice-driven deliverables that improve the teaching and learning of mathematics.

CAREER: Advancing Secondary Mathematics Teachers' Quantitative Reasoning

Integrating Quality Talk Professional Development to Enhance Professional Vision and Leadership for STEM Teachers in High-Need Schools

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions.

Award Number: 
1316347
Funding Period: 
Mon, 07/15/2013 - Fri, 06/30/2017
Full Description: 

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. It is hypothesized that the QT model will enhance pre- and in-service secondary teachers' development of professional vision and leadership skills necessary for 21st century STEM education. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms in five of Georgia's high-need school districts by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions. As a result of such interactions, students' scientific literacy will be enhanced, including their ability to participate in content-rich discourse (i.e., QT) through effective disciplinary critical-analytic thinking and epistemic cognition. The contributions of this project, beyond the tangible benefits for teacher and student participants, include the development, refinement, and dissemination of an effective QT intervention and professional developmental framework that the entire science education community can use to promote scientific literacy and understanding.

The project goals are being achieved through a series of three studies employing complementary methods and data sources, and a focus upon dissemination of the model in the final project year. The first two years of the project focus on developing and refining the curricular and intervention efficacy materials using design-based research methods. In Year 3, the project engages in a quasi-experimental study of the refined QT model, followed by further refinements before disseminating the materials both within Georgia and throughout the national science education community in Year 4. Quantitative measures of teacher and student discourse and knowledge, as well as video-coding and qualitative investigations of intervention efficacy, are being analyzed using multiple methods. In collaboration with, but independent from project staff and stakeholders, the participatory and responsive evaluation utilizes a variety of qualitative and quantitative methods to conduct formative and summative evaluation.

Over the course of four years, the project will involve the participation of approximately 32 teachers in Georgia whose students include substantive percentages from populations underrepresented in the STEM fields. In addition to advancing their own students' scientific literacy, these participating teachers receive professional development on how to train other teachers, outside of the project, in using QT to promote scientific literacy. Further, the project will conduct a QT Summit for educational stakeholders and non-participant teachers to disseminate the intervention and professional development model. Finally, the project team will disseminate the findings widely to applied and scholarly communities through a website with materials and PD information (http://www.qualitytalk.org), professional journals, conferences, and NSF's DRK-12 Resource Network. This project, with its focus on teacher leadership and the pedagogical content knowledge necessary to use discourse to promote student science literacy, significantly advances the nation's goals of producing critical consumers and producers of scientific knowledge.

Integrating Quality Talk Professional Development to Enhance Professional Vision and Leadership for STEM Teachers in High-Need Schools

Investigating Simulations of Teaching Practice: Assessing Readiness to Teach Elementary Mathematics

The PI of this project argues cogently that assessment of pre-service teacher preparedness to teach is based on a flawed model. The goal then is to use a simulation model from other professional arenas: the training of doctors, nurses, etc., to offer new insights and control for the many variables that come to play when conducting evaluations in practice.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316571
Funding Period: 
Tue, 10/01/2013 - Wed, 09/30/2015
Full Description: 

The PI argues cogently that assessment of pre-service teacher preparedness to teach is based on a flawed model. The goal then is to use a simulation model from other professional arenas: the training of doctors, nurses, etc., to offer new insights and control for the many variables that come to play when conducting evaluations in practice. These might include classroom context, the difficulty of the mathematics being deployed, etc. To do this the PI will develop three assessments that vary in the simulation scenario. In the context of developing and validating these assessments, the PI will examine:

1. What do we learn about the nature of pre-service teachers skills at eliciting and interpreting students thinking and their mathematical knowledge for teaching (MKT) in use through assessments that simulate teaching practice? How does their performance correspond with eliciting and interpreting students mathematical thinking in classroom contexts?

2. How does the nature of pre-service teachers skills at eliciting and interpreting students thinking and mathematical knowledge vary in relation to different simulation scenarios? Are some simulation scenarios easier than other simulation scenarios?

3. What are the challenges of designing alternative versions of a particular simulation assessment?

Investigating Simulations of Teaching Practice: Assessing Readiness to Teach Elementary Mathematics

Fostering Pedagogical Argumentation: Pedagogical Reasoning with and About Student Science Ideas

This project will use an iterative approach to design activities and supports that foster pedagogical argumentation for use in undergraduate teacher education courses. This project will examine: 1) whether and how PSTs engage in pedagogical argumentation and 2) whether and how this engagement impacts how they listen and respond to student ideas.

Award Number: 
1316232
Funding Period: 
Tue, 10/01/2013 - Fri, 09/30/2016
Full Description: 

Effective and ambitious teaching in science requires that teachers listen and respond to student ideas. But research shows that doing so in the classroom can be logistically, socially, and intellectually challenging for both expert and novice teachers. Listening to student ideas requires teachers to anticipate and interpret multiple lines of thinking that may be expressed ambiguously and simultaneously. Responding to student thinking, both in-the-moment and in future instruction, presents further challenges because teachers must balance their choices with other instructional priorities. Unfortunately, little work has been done to date in supporting these challenging practices in those who are learning to teach, pre-service teachers (PSTs). In order to address this gap, researchers in this Exploratory project will introduce a new approach to teacher education: pedagogical argumentation. Pedagogical argumentation creates a supportive environment in which the PSTs learn and refine these practices of listening and responding by using student ideas as evidence to construct and defend potential pedagogical decisions.

Over three years researchers from the University of Wisconsin-Madison will use an iterative approach to design activities and supports that foster pedagogical argumentation for use in undergraduate teacher education courses. This project will examine: 1) whether and how PSTs engage in pedagogical argumentation and 2) whether and how this engagement impacts how they listen and respond to student ideas. Working with both elementary and secondary PSTs, researchers will probe and explore their changing listening and responding practices by: collecting records of pedagogical argumentation (both video and written) as it occurs in the science teaching methods courses; conducting interviews about PSTs understanding of student ideas; and documenting PSTs teaching experiences in their school placements.

The science teacher education community writ large is in need of systematic approaches to teacher education that better support PSTs in learning ambitious teaching practices such as listening and responding to student ideas. The proposed study addresses this need and, in doing so, will support both immediate PSTs in engaging in this work as well as the broader teacher education community as it struggles with these same challenges. Moreover, the novel practice of pedagogical argumentation advances the fields theoretical understanding of the problem space for supporting these challenges by combining insight from two extensive programs of research in teaching and learning: 1) teacher reasoning about student ideas, and 2) argumentation about science content. As such, the practice of pedagogical argumentation has the potential to transform how teacher educators approach pre-service education.

Fostering Pedagogical Argumentation: Pedagogical Reasoning with and About Student Science Ideas
Syndicate content