Engineering

Improving Integrated STEM Education: The Design and Development of a K-12 STEM Observation Protocol (STEM-OP) (RTP)

Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education.

Author/Presenter

Emily Anna Dare

Benny Mart Reblando Hiwatig

Khomson Keratithamkul

Joshua Alexander Ellis

Gillian Roehrig

Elizabeth A. Ring-Whalen

Mark Rouleau

Farah Faruqi

Corbin Rice

Preethi Titu

Feng Li

Jeanna R. Wieselmann

Elizabeth A Crotty

Year
2021
Short Description

The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Author/Presenter

Emily A. Dare

Elizabeth A. Ring-Whalen

Year
2021
Short Description

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education.

Beyond Content: The Role of STEM Disciplines, Real-World Problems, 21st Century Skills, and STEM Careers within Science Teachers’ Conceptions of Integrated STEM Education

Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction.

Author/Presenter

Khomson Keratithamkul

Benny Mart Hiwatig

Feng Li

Year
2021
Short Description

This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms.

Beyond Content: The Role of STEM Disciplines, Real-World Problems, 21st Century Skills, and STEM Careers within Science Teachers’ Conceptions of Integrated STEM Education

Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction.

Author/Presenter

Khomson Keratithamkul

Benny Mart Hiwatig

Feng Li

Year
2021
Short Description

This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms.

Beyond Content: The Role of STEM Disciplines, Real-World Problems, 21st Century Skills, and STEM Careers within Science Teachers’ Conceptions of Integrated STEM Education

Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction.

Author/Presenter

Khomson Keratithamkul

Benny Mart Hiwatig

Feng Li

Year
2021
Short Description

This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms.

The Curious Construct of Active Learning

The construct of active learning permeates undergraduate education in science, technology, engineering, and mathematics (STEM), but despite its prevalence, the construct means different things to different people, groups, and STEM domains. To better understand active learning, we constructed this review through an innovative interdisciplinary collaboration involving research teams from psychology and discipline-based education research (DBER).

Author/Presenter
Doug Lombardi

Thomas F. Shipley

Astronomy Team

Biology Team

Chemistry Team

Engineering Team

Geography Team

Geoscience Team

Physics Team

Lead Organization(s)
Year
2021
Short Description

The construct of active learning permeates undergraduate education in science, technology, engineering, and mathematics (STEM), but despite its prevalence, the construct means different things to different people, groups, and STEM domains. To better understand active learning, we constructed this review through an innovative interdisciplinary collaboration involving research teams from psychology and discipline-based education research (DBER). Our collaboration examined active learning from two different perspectives (i.e., psychology and DBER) and surveyed the current landscape of undergraduate STEM instructional practices related to the modes of active learning and traditional lecture.

Designing for Framing in Online Teacher Education: Supporting Teachers’ Attending to Student Thinking in Video Discussions of Classroom Engineering

Participating in discussions of classroom video can support teachers to attend to student thinking. Central to the success of these discussions is how teachers interpret the activity they are engaged in—how teachers frame what they are doing. In asynchronous online environments, negotiating framing poses challenges, given that interactions are not in real time and often require written text. We present findings from an online course designed to support teachers to frame video discussions as making sense of student thinking.

Author/Presenter
Jessica Watkins

Merredith Portsmore

Lead Organization(s)
Year
2021
Short Description

We present findings from an online course designed to support teachers to frame video discussions as making sense of student thinking. In an engineering pedagogy course designed to emphasize responsiveness to students’ thinking, we documented shifts in teachers’ framing, with teachers more frequently making sense of, rather than evaluating, student thinking later in the course. These findings show that it is possible to design an asynchronous online course to productively engage teachers in video discussions and inform theory development in online teacher education.

The Honeycomb of Engineering Framework: Philosophy of Engineering Guiding Precollege Engineering Education

Background
Understanding the nature of engineering is important for shaping engineering education, especially precollege education. While much research has established the pedagogical benefits of teaching engineering in kindergarten through 12th grade (K–12), the philosophical foundations of engineering remain under-examined.

Author/Presenter

Şenay Purzer

Jenny Quintana-Cifuentes

Muhsin Menekse

Lead Organization(s)
Year
2021
Short Description

This conceptual paper introduces the honeycomb of engineering framework, which offers an epistemologically justified theoretical position and a pedagogical lens that can be used to examine ways engineering concepts and practices are taught in precollege education.