Course

Teachers Extending Their Knowledge in Online Collaborative Learning Environments: Opportunities and Challenges

STEM Categorization: 
Day: 
Fri

Join two projects to discuss the challenges and opportunities afforded through online environments for providing professional development and supporting classroom implementation of mathematical practices.

Date/Time: 
9:15 am to 10:45 am
Session Materials: 

Teams of researchers from Drexel University, Rutgers University, University of Missouri, and the Math Forum have been investigating online environments for math education and math teacher professional learning communities. The Virtual Math Teams project has developed a synchronous, multi-user GeoGebra implementation and studies the learning of small groups as well as the preparation of teachers to facilitate this learning.

Session Types: 

CAREER: Leveraging Contrasting Cases to Investigate Integer Understanding

Most students learn about negative numbers long after they have learned about positive numbers, and they have little time or opportunity to build on their prior understanding by contrasting the two concepts. The purpose of this CAREER project is to identify language factors and instructional sequences that contribute to improving elementary students' understanding of addition and subtraction problems involving negative integers. 

Lead Organization(s): 
Award Number: 
1350281
Funding Period: 
Thu, 05/15/2014 to Tue, 04/30/2019
Full Description: 

Currently, most students learn about negative numbers long after they have learned about positive numbers, and they have little time or opportunity to build on their prior understanding by contrasting the two concepts. Therefore, they struggle to make sense of negative integer concepts, which appear to conflict with their current understanding. The purpose of this CAREER project is to identify language factors and instructional sequences that contribute to improving elementary students' understanding of addition and subtraction problems involving negative integers. A second objective is to identify how elementary teachers interpret their students' integer understanding and use research findings to support their teaching of these concepts. This project is expected to contribute to theories regarding the development of integer understanding as well as what makes a useful contrasting case when learning new, related concepts. Moreover, the results of this project can contribute to our understanding of how to build on students? prior number knowledge rather than contradict it.

The principal investigator will conduct a series of four experimental studies involving a preparation for learning component with students randomly assigned to treatment or control groups. Study 1 will involve second and fourth graders and will test the language factors that support students' understanding of integers. Studies 2-4 will involve second and fifth graders and will test the optimal order in which integer addition and subtraction problems are presented in contrast with each other versus sequentially without contrasts. Using items that measure students? understanding of integers and integer operations, the PI will compare students' gains from pre-tests to post-tests between groups. Further, the investigator will qualitatively code students? solution strategies based on follow-up interviews and written work for additional information on the differences between groups. Following the experimental studies, the PI will work with elementary teachers over three lesson study cycles, during which teachers will implement instruction based on the prior studies? results. The PI will compare the performance of students who participate in the lesson study unit versus control classrooms to measure impact of the unit.

Videos of the lesson study unit, as well as the negative integer lesson plans will be made available for other teachers and teacher educators to use. Further, the investigator will incorporate the research results into an undergraduate mathematics methods course. To ensure that the results of this research reach a wider audience, the investigator will create an integer game and storybook, illustrating key concepts identified through the research, that parents can explore together with their children during family math nights and at home. On a broader scale, this project has the potential to illuminate ways to develop more coherence in the sequencing of mathematics topics to more effectively build on students? current understanding.

EarSketch: An Authentic, Studio-based STEAM Approach to High School Computing Education

This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses.

Award Number: 
1417835
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Project Evaluator: 
Mary Moriarity
Full Description: 

This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses. The project is grounded on the premise that EarSketch, a STEM + Art (STEAM) learning environment, embodies authenticity (i.e., its cultural and industry relevance in both arts and STEM domains), along with a context that facilitates communication and collaboration among students (i.e., through a studio-based learning approach). These elements are critical to achieving successful outcomes across diverse student populations. Using agent-based modeling, the research team will investigate what factors enhance or impede implementation of authentic STEAM tools in different school settings.

The researchers will be engaged in a multi-stage process to develop: a) an implementation-ready, web-based EarSketch learning environment that integrates programming, digital audio workstation, curriculum, audio loop library, and social sharing features, along with studio-based learning functionality to support student presentation, critique, discussion, and collaboration; and b) an online professional learning course for teachers adopting EarSketch in Computer Science Principles courses. Using these resources, the team will conduct a quasi-experimental study of EarSketch in Computer Science Principles high school courses across the state of Georgia; measure student learning and engagement across multiple demographic categories; and determine to what extent an EarSketch-based CS Principles course promotes student achievement and engagement across different student populations. The project will include measures of student performance, creativity, collaboration, and communication in student programming tasks to determine the extent to which studio-based learning in EarSketch promotes success in these important areas. An agent-based modeling framework in multiple school settings will be developed to determine what factors enhance or impede implementation of EarSketch under conditions of routine practice.

Changing Culture in Robotics Classroom (Collaborative Research: Shoop)

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418199
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources. This project builds upon a ten year collaboration between Carnegie Mellon's Robotics Academy and the University of Pittsburgh's Learning Research and Development Center that studied how teachers implement robotics education in their classrooms and developed curricula that led to significant learning gains. This project will address the following three questions:

1.What kinds of resources are useful for motivating and preparing teachers to teach computational thinking and for students to learn computational thinking?

2.Where do teachers struggle most in teaching computational thinking principles and what kinds of supports are needed to address these weaknesses?

3.Can virtual environments be used to significantly increase access to computational thinking principles?

The project will augment traditional robotics classrooms and competitions with Robot Virtual World (RVW) that will scaffold student access to higher-order problems. These virtual robots look just like real-world robots and will be programmed using identical tools but have zero mechanical error. Because dealing with sensor, mechanical, and actuator error adds significant noise to the feedback students' receive when programming traditional robots (thus decreasing the learning of computational principles), the use of virtual robots will increase the learning of robot planning tasks which increases learning of computational thinking principles. The use of RVW will allow the development of new Model-Eliciting Activities using new virtual robotics challenges that reward creativity, abstraction, algorithms, and higher level programming concepts to solve them. New curriculum will be developed for the advanced concepts to be incorporated into existing curriculum materials. The curriculum and learning strategies will be implemented in the classroom following teacher professional development focusing on computational thinking principles. The opportunities for incorporating computationally thinking principles in the RVW challenges will be assessed using detailed task analyses. Additionally regression analyses of log-files will be done to determine where students have difficulties. Observations of classrooms, surveys of students and teachers, and think-alouds will be used to assess the effectiveness of the curricula in addition to pre-and post- tests to determine student learning outcomes.

Changing Culture in Robotics Classroom (Collaborative Research: Schunn)

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1416984
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources. This project builds upon a ten year collaboration between Carnegie Mellon's Robotics Academy and the University of Pittsburgh's Learning Research and Development Center that studied how teachers implement robotics education in their classrooms and developed curricula that led to significant learning gains. This project will address the following three questions:

1.What kinds of resources are useful for motivating and preparing teachers to teach computational thinking and for students to learn computational thinking?

2.Where do teachers struggle most in teaching computational thinking principles and what kinds of supports are needed to address these weaknesses?

3.Can virtual environments be used to significantly increase access to computational thinking principles?

The project will augment traditional robotics classrooms and competitions with Robot Virtual World (RVW) that will scaffold student access to higher-order problems. These virtual robots look just like real-world robots and will be programmed using identical tools but have zero mechanical error. Because dealing with sensor, mechanical, and actuator error adds significant noise to the feedback students' receive when programming traditional robots (thus decreasing the learning of computational principles), the use of virtual robots will increase the learning of robot planning tasks which increases learning of computational thinking principles. The use of RVW will allow the development of new Model-Eliciting Activities using new virtual robotics challenges that reward creativity, abstraction, algorithms, and higher level programming concepts to solve them. New curriculum will be developed for the advanced concepts to be incorporated into existing curriculum materials. The curriculum and learning strategies will be implemented in the classroom following teacher professional development focusing on computational thinking principles. The opportunities for incorporating computationally thinking principles in the RVW challenges will be assessed using detailed task analyses. Additionally regression analyses of log-files will be done to determine where students have difficulties. Observations of classrooms, surveys of students and teachers, and think-alouds will be used to assess the effectiveness of the curricula in addition to pre-and post- tests to determine student learning outcomes.

Integrating Quality Talk Professional Development to Enhance Professional Vision and Leadership for STEM Teachers in High-Need Schools

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions.

Award Number: 
1316347
Funding Period: 
Mon, 07/15/2013 to Fri, 06/30/2017
Full Description: 

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. It is hypothesized that the QT model will enhance pre- and in-service secondary teachers' development of professional vision and leadership skills necessary for 21st century STEM education. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms in five of Georgia's high-need school districts by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions. As a result of such interactions, students' scientific literacy will be enhanced, including their ability to participate in content-rich discourse (i.e., QT) through effective disciplinary critical-analytic thinking and epistemic cognition. The contributions of this project, beyond the tangible benefits for teacher and student participants, include the development, refinement, and dissemination of an effective QT intervention and professional developmental framework that the entire science education community can use to promote scientific literacy and understanding.

The project goals are being achieved through a series of three studies employing complementary methods and data sources, and a focus upon dissemination of the model in the final project year. The first two years of the project focus on developing and refining the curricular and intervention efficacy materials using design-based research methods. In Year 3, the project engages in a quasi-experimental study of the refined QT model, followed by further refinements before disseminating the materials both within Georgia and throughout the national science education community in Year 4. Quantitative measures of teacher and student discourse and knowledge, as well as video-coding and qualitative investigations of intervention efficacy, are being analyzed using multiple methods. In collaboration with, but independent from project staff and stakeholders, the participatory and responsive evaluation utilizes a variety of qualitative and quantitative methods to conduct formative and summative evaluation.

Over the course of four years, the project will involve the participation of approximately 32 teachers in Georgia whose students include substantive percentages from populations underrepresented in the STEM fields. In addition to advancing their own students' scientific literacy, these participating teachers receive professional development on how to train other teachers, outside of the project, in using QT to promote scientific literacy. Further, the project will conduct a QT Summit for educational stakeholders and non-participant teachers to disseminate the intervention and professional development model. Finally, the project team will disseminate the findings widely to applied and scholarly communities through a website with materials and PD information (http://www.qualitytalk.org), professional journals, conferences, and NSF's DRK-12 Resource Network. This project, with its focus on teacher leadership and the pedagogical content knowledge necessary to use discourse to promote student science literacy, significantly advances the nation's goals of producing critical consumers and producers of scientific knowledge.

Inquiry Primed: An Intervention to Mitigate the Effects of Stereotype Threat in Science

This project investigates stereotype threat at the classroom level and in the context of inquiry-based instruction, in order to develop strategies and a related professional development course, using the principles of Universal Design for Learning, to help teachers learn how to mitigate stereotype threat.

Award Number: 
1313713
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

Inquiry Primed: An Intervention to Mitigate the Effects of Stereotype Threat is an Exploratory Project in the Teacher Strand of DRK-12 that investigates stereotype threat at the classroom level and in the context of inquiry-based instruction, in order to develop strategies and a related professional development course, using the principles of Universal Design for Learning, to help teachers learn how to mitigate stereotype threat.

The project includes three major activities:

1) An experimental study testing the hypothesis that the influences of stereotype threat on individual students affects instructional processes for the class as a whole: Research participants include three teachers from 3 different school districts in Massachusetts, each with four 8th grade science classes, for a total sample of 12 science classes and approximately 300 students. The two treatment conditions (stereotype threat induced vs. not induced) are applied blindly to three classroom groups over a series of six lessons. The project uses existing surveys for gathering data, including "Communicative Interactions", RTOP subscales, subscales of the Constructivist Learning Environment Survey (CLES), and a brief student questionnaire measuring domain salience (e.g., self ranking of degree of participation in class). The analysis is conducted using Ordinary Least Squares (OLS) regression, with predictions of classroom instructional processes based on treatment condition, percentage of students in stereotyped group, and domain salience.

2) Collaboration with teachers as co-researchers to translate research findings into classroom practices and a prototype online professional development course: Three middle school teachers who participated in Study 1 serve as co-researchers, using the Universal Design for Learning model. The product is a prototype, online professional development modules that include self-paced presentations, small group facilitated discussions, asynchronous discussions, and live webcasts with experts, all focused on how teachers can implement strategies to mitigate stereotype threat in their practice. The design elements will be assessed in terms of clarity, accessibility, use, value, and promise.

3) Pilot testing of three professional development modules: The professional development component (via communities of practice) supports classroom teachers as they incorporate these strategies into their daily activities. The three teachers involved in the original study and design of modules participate in a six-week pilot study of the online professional development course, anticipated to consist of three modules, with teachers participating 3-4 hours per week. The course is evaluated through observations of professional development interactions (synchronous and asynchronous), interviews, implementation strategies, Moodle Electronic Usage Logs, online discussions, and a questionnaire. Descriptive statistics and regression analysis are used to seek predictors of use and contributions by teacher characteristics.

The project contributes critical knowledge about stereotype threat, a construct shown to contribute to disparities in achievement in STEM education. The outcomes of the project will include research findings that are to be submitted to science education research journals for publication; a prototype, online teacher professional development course on mitigating stereotype threat in STEM education classrooms; and dissemination of the course to teachers who are part of the CAST and Minority Student Achievement Networks.

Developing Rich Media-Based Materials for Practice-Based Teacher Education

This research and development project is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom.

Award Number: 
1316241
Funding Period: 
Thu, 08/15/2013 to Tue, 07/31/2018
Full Description: 

The 4-year research and development project, Developing Rich Media-based Materials for Practice-based Teacher Education, is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom. Furthermore, teacher educators and teachers can react to such animations or image sequences by making their own depictions of alternative moves by students or teachers in classroom interaction. And all of that can take place in an on-line, cloud-based environment that also supports discussion fora, questionnaires, and the kinds of capabilities associated with learning management systems. Such technologies offer important affordances to teacher educators seeking to provide candidates with course-based experiences that emphasize the development of practice-based skills. The focus of the project is on mathematics teacher education. This joint project of the University of Maryland Center for Mathematics Education and the University of Michigan will produce 6 to 8 field-tested modules for use in different courses that are a part of mathematics teacher preparation programs. The following two-pronged research question will be resolved: What are the affordances and constraints of the modules and the environment as supports for: (1) practice based teacher education and (2) a shift toward blended teacher education?

The project involves the following activities: (1) a teacher education materials development component; (2) a related evaluation component; and (3) two research components. The development phase seeks to develop both the LessonSketch.org platform and six to eight mathematics teacher education modules for use in preservice teacher education programs from around the country. The modules will be written with practice-based teacher education goals in mind and will use the capacities of the LessonSketch.org platform as a vehicle for using rich-media artifacts of teaching with preservice teacher candidates. LessonSketch Teacher Education Research and Development Fellows will be chosen through a competitive application process. They will develop their respective modules along with teams of colleagues that will be recruited to form their inquiry group and pilot the module activities. The evaluation activity will focus on the materials development aspect of the project. Data will be collected by the LessonSketch platform, which includes interviews with Fellows and their teams, perspectives of module writers, descriptive statistics of module use, and feedback from both teacher educator and preservice teacher end-users about the quality of their experiences. The first research activity of the project is design research on the kinds of technological infrastructure that are useful for practice-based teacher education. The PIs will identify tools that teacher educators need and want beyond the current capabilities for web-based support for use of rich media and will produce prototype tools inside the LessonSketch environment to meet these needs. The second research activity of the project will supplement the evaluation activity by examining the implementation of two of the modules in detail. This aspect of the research will examine the goals of the intended curriculum, the proposed modes of media use, the fidelity of the implemented curriculum, and learnings produced by preservice teachers. This research activity will help the field understand the degree to which practice-based teacher education that is mediated by an online access to rich media would be a kind of practice that could be easily incorporated into existing teacher education structures.

The project will produce 6 to 8 LessonSketch modules for use in teacher education classes. Each module will be implemented in at least eight teacher education classes across the country, which means that between 720 and 960 preservice teacher candidates will study the materials. The project aims to shift the field toward practice-based teacher education by supporting university programs to implement classroom-driven activities that will produce mathematics teachers with strong capabilities to teach mathematics effectively and meaningfully.

Enhancing Teaching and Learning with Social Media: Supporting Teacher Professional Learning and Student Scientific Argumentation

This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards.

Award Number: 
1316799
Funding Period: 
Thu, 08/01/2013 to Mon, 07/31/2017
Full Description: 

This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards. Participants include a team of ninth and tenth grade Life Science teachers collaborating as co-researchers with project staff in a design study to develop one socially mediated science unit. It also produces strategies, tools and on-line materials to support teachers' development of the pedagogical, content, and technological knowledge needed to integrate emerging technologies into science instruction. This project focuses on the flexible social media sites such as Facebook, Twitter and Instagram that students frequently use in their everyday lives. Research questions explore the technology of social media and the pedagogy needed to support student engagement in scientific argumentation. The Year Three pilot analyses provide data on the professional learning model. The project provides a basis for scale-up with this instructional and professional learning model to other core science content, cross-cutting themes, and STEM practices.

CAREER: Reciprocal Noticing: Latino/a Students and Teachers Constructing Common Resources in Mathematics

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1253822
Funding Period: 
Wed, 05/15/2013 to Mon, 04/30/2018
Full Description: 

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners. Thus, the focus of the project is on developing the concept of reciprocal noticing as a way to support better interactions between teachers and Latino/a students in elementary mathematics classrooms.

The project uses a transformative teaching experiment methodology and is guided by the initial conjectures that to make mathematics classrooms intellectually attractive places, Latino/a students and teachers need to learn to develop common resources for teaching and learning mathematics, and that reciprocal noticing as a process supports teachers and students in developing these common resources for teaching and learning mathematics. The project design centers around two research questions:How do teachers and Latino/a students tune to each other's mathematical ideas and explicitly indicate to one another how their ideas are important for discourse that promotes mathematical reasoning in classrooms characterized by reciprocal noticing? What patterns emerge across four classrooms when teachers and Latino/a students engage in reciprocal noticing?

The concept of reciprocal noticing can significantly enhance emerging research in mathematics education about the importance of teacher noticing. Further, this revised concept of noticing can transform mathematics classroom to better support English Language Learners.

The PI will incorporate project findings and videos into methods courses for preservice elementary teachers.

Pages

Subscribe to Course