Energy: A Multidisciplinary Approach for Teachers (EMAT) Designing and Studying a Multidisciplinary, Online Course for High School Teachers

This project will iteratively design, develop, field test, refine, and rigorously study a six-unit, facilitated, online professional development (PD) course focusing on energy-related concepts in the context of alternative energy. The primary audience is high school science teachers teaching out of their field of endorsement and serving students underrepresented in the sciences. The project will investigate whether the PD will precipitate changes in teacher knowledge and practice that result in higher student achievement.

Award Number: 
1118643
Funding Period: 
Thursday, September 1, 2011 to Saturday, August 31, 2013
Project Evaluator: 
RMC Research Corporation
Full Description: 

The Energy: A Multidisciplinary Approach for Teachers (EMAT) project will iteratively design, develop, field test, refine, and rigorously study a seven-unit, facilitated, online professional development (PD) course focusing on energy-related concepts in the context of alternative energy. The primary audience is high school science teachers teaching out of their field of endorsement and serving students underrepresented in the sciences. The project will investigate whether the PD will precipitate changes in teacher knowledge and practice that result in higher student achievement. As a result, EMAT will improve the science achievement of underrepresented students and enhance their future participation in science. Biological Sciences Curriculum Study and partners Oregon Public Broadcasting, the National Teacher Enhancement Network, the National Renewable Energy Laboratory, the Great Lakes Bioenergy Research Center, and RMC Research Corporation bring significant resources and are highly qualified to develop and research EMAT.

The EMAT project advances knowledge in the field of teacher professional development by merging two facets of PD that have hitherto been studied separately and testing hypotheses about the degree to which this pairing enhances learning and practice. These facets are structured constructivist experiences and experiences grounded in situated cognition learning theory. Teachers reflect on research-based teaching practices in the lesson analysis process through Science Content Storyline and Student Thinking lenses. EMAT tests longitudinal impacts on teachers' content knowledge, pedagogical content knowledge, and teaching practices and students' content knowledge, contributing much needed data for future PD projects. EMAT also studies which aspects of online environments are most effective for teachers. Data collected will inform full revisions of the course and will help address significant gaps in our understanding of online PD.

EMAT advances the field's understanding of which elements of online PD are effective and the extent to which high-quality online PD translates to improved student learning. Simultaneously, the project develops and tests a scalable, flexible resource to enhance teacher learning and practice. As a result, EMAT will have a broad impact by promoting research-based teaching and learning while advancing discovery and understanding. Furthermore, by targeting the recruitment of teacher participants from large urban districts with high numbers of teachers teaching out of field, EMAT impacts students traditionally underrepresented in the sciences. EMAT will not only contribute to the research on PD, but also will be available for use in diverse settings. A facilitation guide allows the course to be freely used by school districts and teacher education and certification programs across the country. In addition, the facilitated course will be offered for graduate credit through the National Teacher Enhancement Network and will be freely available to individuals for independent study. Results of all research and evaluation will be published in science education journals and practitioner journals for teachers, and presented to PD groups at conferences. EMAT will benefit society by impacting teacher and student understanding of energy-related concepts, thereby increasing the capacity of U.S. citizens to creatively address energy challenges from a foundation of scientifically sound knowledge.