Other

Differentiation of Energy Concepts Through Speech and Gesture in Interaction

H. G. Close and R. E. Scherr, "Differentiation of Energy Concepts Through Speech and Gesture in Interaction," C. Singh, M. Sabella, and Engelhardt (Eds.), AIP Conf. Proc. (2011 Physics Education Research Conference)

ABSTRACT:

Author/Presenter: 
Hunter Close
Rachel Scherr
Lead Organization(s): 
Year: 
2011

Development of Proximal Formative Assessment Skills in Video-based Teacher Professional Development

E. W. Close, R. E. Scherr, H. G. Close, and S. B. McKagan, "Development of Proximal Formative Assessment Skills in Video-based Teacher Professional Development," C. Singh, M. Sabella, and Engelhardt (Eds.), AIP Conf. Proc. (2011 Physics Education Research Conference)

ABSTRACT:

Author/Presenter: 
Eleanor Close
Rachel Scherr
Hunter Close
Sarah McKagan
Year: 
2011

Research on Technology in Mathematics Education: Theoretical Frameworks and Practical Examples

 

Research on Technology in Mathematics Education: Theoretical Frameworks and Practical Examples

Keynote Address to be presented at the

Korea Society of Educational Studies in Mathematics Conference

Seoul, South Korea

Author/Presenter: 
John Olive
Lead Organization(s): 
Year: 
2011

Using Virtual Environments to Motivate Students to Pursue STEM Careers: An Expectancy-Value Model

Chen, J. A., Zap, N., & Dede, C. (2013). Using virtual environments to motivate students to pursue STEM careers: An expectancy-value model.  In S. D’Agustino (Ed.), Immersive environments, augmented realities, and virtual worlds: Assessing future trends in education.  Hershey, PA: IGI Global.

Author/Presenter: 
Jason Chen
Nick Zap
Chris Dede
Year: 
2013
Short Description: 
The purpose of this chapter is to bring a rigorous and well-studied theoretical framework of motivation to the study and design of virtual learning environments.

DRK12-Biograph: Graphical Programming for Constructing Complex Systems Understanding in Biology

This project will investigate how complex systems concepts supported by innovative curricular resources, technology applications and a comprehensive research and development structure can assist student learning in the domain of biology by providing a unifying theme across scales of time and space. The project seeks to address four areas of critical need in STEM education: biological sciences, complex systems, computational modeling, and equal access for all.

Award Number: 
1019228
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
David Reider
Full Description: 

This proposal outlines a research and development project that investigates how complex systems concepts supported by innovative curricular resources, technology applications and a comprehensive research and development structure can assist student learning in the domain of biology by providing a unifying theme across scales of time and space. The project seeks to address four areas of critical need in STEM education: biological sciences, complex systems, computational modeling, and equal access for all. This proposal explores how these needs are addressed through a curricular and technological intervention that structures biology learning through the framework of complex systems and computational modeling. The primary partners are the Massachusetts Institute of Technology and the University of Pennsylvania, working with eight teachers in four schools in the Boston area.

The project integrates graphical programming and simulation software, StarLogo TNG, into the standard high school biology curriculum to improve learning of biology concepts through the introduction and understanding of core complex systems processes. Instead of learning biology in discrete chunks, the chosen biological topics are connected through the framework of complex systems, and successively build in complexity from the basic building blocks of life to the interdependence and sustainability of life forms. This approach is designed to help students understand how processes at one level are connected to those at another level. The research is designed to answer the following questions: 1. Does a learning progression based on the complex systems ideas of scale and emergence enable students to make connections across biological topics, remediate known misconceptions, and apply core complex systems principles better than traditional instructional sequences? 2. What are the on-going affordances and constraints of implementation taking into consideration structural, functional and behavioral variables and what changes to project activities yield increased implementation and learning capacities? 3. Does programming of simulations increase understanding of complex systems and biology concepts compared to use of previously constructed simulations? The evaluation is designed to collect data and provide feedback on the adherence to the plan, the implementation challenged, and how research informs development.

The project anticipates a number of deliverables towards the end of the project and beyond. These include the creation of a unified high school biology curricular sequence that builds in increasing spatial and temporal scales to deepen student understanding of four core biology topics; the production, implementation and testing of curricular activities that acknowledge and ameliorate known implementation challenges; and the development of curricular strategies and tools to help teachers and students improve knowledge and skills in computational modeling, computer programming and participation in the cyberinfrastructure. In order to increase ease of integration into schools, and enhance scalability, the simulation activities are facilitated by a new web-based version of StarLogo TNG that integrates the curricular materials all of which will be distributed freely. Additional dissemination strategies include a website, conferences, a newsletter, community activities, active dissemination, and academic presentations.

Developing Science Problem-solving Skills and Engagement Through Intelligent Game-based Learning Environments

The project draws upon intelligent tutoring and narrative-centered learning technologies to produce a suite of intelligent game-based learning environments for upper elementary school science students. The games explicitly model student knowledge and problem solving and dynamically customize feedback, advice, and explanation as appropriate. Unlike its predecessor, the platform is multi-user so it can support collaboration; offer dynamically generated feedback, advice, and explanation; and provide a pedagogical dashboard that generates student progress reports.

Project Email: 
Partner Organization(s): 
Award Number: 
0822200
Funding Period: 
Fri, 08/01/2008 to Tue, 07/31/2012
Project Evaluator: 
SERVE Center of North Carolina
Full Description: 

Recent years have seen a growing recognition of the transformative potential of game-based learning technologies for STEM education.  The proposed project addresses the DR-K12 Frontier Challenge of assuring that all students have the opportunity to learn significant STEM content by investigating the following research question: How can intelligent game-based environments promote problem solving and engagement in STEM learning for upper elementary students?  The proposed research on intelligent game-based learning environments investigates problem solving, engagement, and STEM learning by targeting the following three objectives:

1. Design a suite of intelligent game-based learning environment technologies for elementary science education.  To promote effective science learning, we will create intelligent game-based learning environment technologies that leverage the rich interactive 3D game environments provided by commercial game engines and the inferential capabilities of intelligent tutoring systems.  Building on our experience in these two areas, we will create an engaging intelligent game-based learning environment for 5th grade science.  

2. Implement an empirically-based research program to provide a comprehensive account of elementary students’ problem-solving processes and engagement with STEM content as they interact with intelligent game-based learning environments.  To understand the cognitive mechanisms by which learning occurs, we will take a mixed method approach to investigating science learning with an intelligent game-based learning environment for 5th grade science.  These studies will investigate the central issues of problem solving (strategy use, divergent thinking, and collaboration), and engagement (motivation, situational interest, presence) with respect to achievement as measured by both science content knowledge and transfer.  With diverse student populations drawn from both urban and rural settings, the studies will determine precisely which technologies and conditions contribute most effectively to learning processes and outcomes.

3. Evaluate the design and implementation phases of the research in order to assure high quality processes and results.  To ensure the success of the project, an external evaluator will provide formative and summative feedback to the project team.  

It is expected that the proposed work will have a significant impact on the theory and practice of science education.  By taking advantage of the high degree of interactivity offered by intelligent game-based learning environments, the project holds significant potential for creating compelling learning experiences for STEM content.  Because the research will be conducted with a highly diverse student population in both urban and rural settings, and because of the synergistic interaction of the technology and learning science research, the project offers significant potential for creating compelling learning experiences that lead to higher achievement for all students.

Mathematics Instruction Using Decision Science and Engineering Tools

A collaboration among educators, engineers, and mathematicians in three universities, this project is creating, implementing, and evaluating a one-year curriculum for teaching a non-calculus, fourth-year high school mathematics course and accompanied assessment instruments. The curriculum will draw on decision-making tools that include but go well beyond linear programming, to enhance student mathematical competence (particularly solving multi-step problems), improve students' attitudes toward mathematics, and promote states' adoption of the curriculum (initially NC and MI).

Project Email: 
Award Number: 
0733137
Funding Period: 
Sat, 09/15/2007 to Tue, 08/31/2010
Project Evaluator: 
Dr. Shlomo S. Sawilowsky
Full Description: 

Mathematics INstruction using Decision Science and Engineering Tools (MINDSET) is a collaboration among educators, engineers, and mathematicians at three universities to create, implement, and evaluate a new curriculum and textbook to teach standard mathematics concepts using math-based decision-making tools for a non-calculus fourth-year mathematics curriculum that several states now require and others may require in the near future. MINDSET has three goals: (1) enhancement of students’ mathematical ability, especially their ability to formulate and solve multi-step problems and interpret results; (2) improvement in students’ attitude toward mathematics, especially those from underrepresented groups, thereby motivating them to study mathematics; and (3) adoption of the curriculum initially in North Carolina and Michigan, then in other states.

Using decision-making tools from Operations Research and Industrial Engineering, we will develop a fourthyear high school curriculum in mathematics and support materials to teach standard content. Through a multi-state, multi-school district assessment, we will determine if a statistically significant improvement in students’ mathematical ability—particularly in multi-step problem solving and interpretation of results—and in motivation and attitude toward mathematics has occurred. Participating teachers will receive professional training, help to create a knowledge-based online community for support, and in-person and online technical assistance. Through extensive data collection and analysis, we will determine if this infrastructure is sustainable and sufficiently flexible to be reproduced and used by others.

Identifying Critical Characteristics of Effective Feedback Practices in Science and Mathematics Education

This project will define and synthesize effective feedback strategies that can be linked to specific features of daily classroom assessment practices. It will develop a framework, including a conceptual strand (will conceptualize feedback practice considering intrinsic and contextual dimensions) and a methodological strand (used to describe and evaluate the feedback studies and findings to be synthesized). The framework will provide a shared language within and across multiple forms of research in various disciplines.

Award Number: 
0822373
Funding Period: 
Thu, 01/01/2009 to Fri, 12/31/2010
Project Evaluator: 
Advisory board members
Full Description: 

 

Project BEST: Better Education for Science Teachers

This project studies the influence of a professional development program on teachers' PCK and the related impact of PCK on student learning .The proposal team will design and deliver a professional development program for science teachers that is based on the use of curriculum materials, professional development, integrates efforts to improve secondary science teachers' content knowledge, pedagogical knowledge and skill, and helps them to apply this knowledge to the context of their own classroom.

Lead Organization(s): 
Award Number: 
0455846
Funding Period: 
Sun, 05/01/2005 to Sat, 04/30/2011
Full Description: 

    

Universal Design of Inquiry-based Middle and High School Science Curricula (Collaborative Research: Rose)

CAST, the University of Michigan, and EDC are collaborating to create heuristics for universally designed middle and high school science materials; to build an open-source UDL Inquiry Science System (ISS) that enables science curricula to be transformed into digitally supported versions that incorporate UDL features, to use the ISS to produce four UDL exemplars from tested instructional materials, and to evaluate the benefits of these exemplars for grades-5–12 students with and without learning disabilities.

Award Number: 
0730260
Funding Period: 
Sat, 09/15/2007 to Tue, 08/31/2010
Project Evaluator: 
Dan Zalles, SRI

Pages

Subscribe to Other