Design Technology and Engineering Education for English Learner Students: Project DTEEL

One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills. 

Lead Organization(s): 
Award Number: 
1503428
Funding Period: 
Monday, June 1, 2015 to Thursday, May 31, 2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills. 

The project's cross-disciplinary approach is grounded in both inquiry-based science education research and bilingual cognition research. These complementary foci bridge research areas to highlight how engineering experiences for students can capitalize on bilingual students' experiences as problem solvers. The project will develop teachers' ability and instructional efficacy for both STEM and bilingual student instruction. The project adapts a previously developed curriculum for engineering education by adding resources and tools to support bilingual students. The research design primarily measures teacher-level phenomenon such as implementation of instructional strategies, STEM self-efficacy and ability to address the academic development of bilingual students through engineering design activities. Data collected include classroom observations, teacher surveys, focus groups, and teacher interviews. Student assessments will be piloted in the final year of the project.