Workshop

Facilitating Teachers' and Young Children's Science Learning Through Iterative Cycles of Teacher Professional Development

This professional development project engages a sample of kindergarten and 1st-grade teachers in a series of workshops, during which teachers will work individually and together to design and test new lesson plans that enhance teachers' abilities to help young children think and act like a scientist. Moreover, teachers work individually and together to construct lessons that connect science content to young learners' cultural backgrounds, interests and prior knowledge.

Lead Organization(s): 
Award Number: 
1621400
Funding Period: 
Mon, 08/01/2016 to Tue, 07/31/2018
Full Description: 

Professional development is crucial to supporting early childhood teachers' ability to design and implement lessons that promote young children's science literacy as envisioned by the new Next Generation Science Standards (NGSS). Yet few studies have examined the impact of professional development on early childhood teachers' science knowledge and skills and in turn, how changes in teachers' knowledge and skills relate to student learning. Set within the context of a diverse district in the New York City Public Schools, this professional development project engages a sample of kindergarten and 1st-grade teachers in a series of Saturday workshops. During the workshops teachers work individually and together to design and test new lesson plans that enhance teachers' abilities to help young children think and act like a scientist. Moreover, teachers work individually and together to construct lessons that connect science content to young learners' cultural backgrounds, interests and prior knowledge. This project is important intellectually because it adds to the knowledge base of how to engage young children in scientific inquiry. In practical terms, the project offers teachers a set of field-tested outcomes and products demonstrating how to effectively embed science-learning experiences into early childhood curriculum, instruction and assessment.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project uses an iterative process where teachers work on their own and collaboratively in Professional Learning Communities (PLC). Over the course of 2 years, these PLCs: (1) collaboratively design, field test and refine science-integrated lessons before implementing them in their classrooms; (2) participate in face-to-face and virtual meetings with other participating teachers and research project staff; and (3) receive mentoring and support to further reinforce their learning for NGSS teaching. Pre- and post-project measures will assess the professional development program's impact on 10 kindergarten and 10 first-grade teachers who serve a diverse array of 200 students in one of the nation's largest public school systems. Specifically, the project will examine: (a) teachers' lesson plans; (b) implementation of their lessons in the classroom; (c) samples of student work; and (d) students' learning behaviors. Qualitative and quantitative measures will be used to determine the project's anticipated outcomes which include: the characteristics of effective professional development for early childhood teachers; improved NGSS- based knowledge, skills and dispositions of kindergarten and first-grade teachers; and improved student science learning. In this way the project has the potential to catalyze new approaches to STEM learning, teaching and assessment at the early childhood level.

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Developing Teachers as Computational Thinkers Through Supported Authentic Experiences in Computing Modeling and Simulation

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by NGSS to prepare middle school science teachers to implement rich computational thinking experiences within science classes.

Partner Organization(s): 
Award Number: 
1639069
Funding Period: 
Fri, 01/01/2016 to Sun, 06/30/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by the Next Generation Science Standards to prepare middle school science teachers to implement rich computational thinking (CT) experiences, such as the use, creation and analysis of computer models and simulations, within science classes.

The project, a partnership between the Santa Fe Institute and the Santa Fe Public School District, directly addresses middle school teachers' understanding, practice, and teaching of modern scientific practice. Using the Project GUTS program and professional development model as a foundation, this project will design and develop a set of Resources, Models, and Tools (RMTs) that collectively form the basis for a comprehensive professional development (PD) program, then study teachers' experiences with the RMTs and assess how well the RMTs prepared teachers to implement the curriculum. The PD program includes: an online PD network; workshops; webinars and conferences; practicum and facilitator support; and curricular and program guides. The overall approach to the project is design based implementation research (DBIR). Methods used for the implementation research includes: unobtrusive measures such as self-assessment sliders and web analytics; the knowledge and skills survey (KS-CT); interviews (teachers and the facilitators); analysis of teacher modified and created models; and observations of practicum and classroom implementations. Data collection and analysis in the implementation research serve two purposes: a) design refinement and b) case study development. The implementation research employs a mixed-method, nonequivalent group design with embedded case studies.

North Dakota Collaborative STEM Conference 2016

Lead Organization(s): 
Award Number: 
1552135
Funding Period: 
Sun, 11/01/2015 to Mon, 10/31/2016
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project at the University of North Dakota proposes to conduct a conference to bring together K-12 teachers of science and mathematics in North Dakota. The proposed innovative conference would collaboratively combine the annual meetings of three organizations in the state of North Dakota, all of whom have K-12 roles in the development of a STEM-literate workforce squarely in their focus. The three organizations are: North Dakota Science Teachers Association (NDSTA), North Dakota Math Council of Teachers of Mathematics (NDCTM), and the North Dakota STEM Network (NDSTEM). The program involves a statewide collaboration of higher education faculty and staff, state government and local community leaders, K-12 administrators and teachers, informal educators, and representatives of local STEM related business and industry.

The conference will involve the major STEM education networks in the state. The evaluation of the conference will be done by post-conference surveys that will capture the impact of it on the professional development of teachers and the awareness and knowledge of higher education, government, along with business and industry to positively interact and support math and science educators in preparing their students for the workforce of tomorrow.

A Task Force on Conceptualizing Elementary Mathematical Writing: Implications for Mathematics Education Stakeholders

The Elementary Mathematical Writing (EMW) Task Force was made up of educators with unique perspectives about elementary mathematical writing and with the goal to reach a consensus about and priorities for the types of and purposes for elementary mathematical writing. The EMW Task Force met in October 2015, analyzed elementary writing prompts and samples, standards documents, and recommendations, and identified four types of mathematical writing and their associated purposes: Exploratory, Informative/Explanatory, Argumentative, and Mathematically Creative.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1545908
Funding Period: 
Tue, 09/01/2015 to Wed, 08/31/2016
Full Description: 

Communicating about mathematical ideas by talking and writing is central to the teaching and learning of mathematics as it can help students learn concepts at a deeper level. More specifically, according to the Common Core State Standards (CCSS), students should develop their ability to construct viable arguments and critique the reasoning of others in mathematics and write across content areas. However, there is limited guidance about how to teach students to write mathematically, how to evaluate students' mathematical writing, and the kinds of mathematical writing tasks to include in curriculum resources. This may mean that students do not experience the benefits from writing about their mathematical ideas.

The Elementary Mathematical Writing (EMW) Task Force was made up of educators who bring unique perspectives about elementary mathematical writing. It included practitioners and academics from the fields of mathematics education, mathematics, and writing education and who are knowledgeable about students who have special needs, are English language learners, and have been identified as gifted. With the ultimate goal of reaching consensus about and priorities for the types of and purposes for elementary mathematical writing, the task force reviewed student work, writing prompts, curriculum standards, and other items. They also suggested recommendations for future work in this area.

The EMW Task Force meth the goals of identifying, describing, and recommending productive types of and purposes for mathematical writing by elementary students. The four types of mathematical writing are:

  • Exploratory – with the purpose of personally making sense of a problem, situation, or one’s own ideas.
  • Informative/Explanatory – with the purposes of describing or explaining mathematical ideas.
  • Argumentative – with the purposes of constructing viable arguments and/or critiquing the reasoning of others.
  • Mathematically Creative – with the purposes of documenting original ideas, problems, and/or solutions; conveying fluency and flexibility in thinking; and elaborating on ideas.

The work and recommendations of the EMW Task force highlights the necessity of a comprehensive line of work related to mathematical writing at a critical juncture in the history of the field of mathematics education. The intellectual merit of this project, therefore, is in its potential to transform the field of mathematics education. The broader impacts include the facilitation of collaboration among and across disciplines and stakeholders.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Building Assessment Items and Instructional Tasks to Build Intercommunity Capacity to Develop Teachers' Mathematical Knowledge for Teaching

The infrastructure to improve mathematics education in the US requires building human resources in mathematics and mathematics education into a professional community that can respond to the critical needs in the field. This project seeks to build a professional community with shared understanding of the specialized content knowledge (SCK) - the special forms and ways of reasoning about mathematical knowledge used in teaching (MKT). 

Lead Organization(s): 
Award Number: 
1502778
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

The infrastructure to improve mathematics education in the US requires building human resources in mathematics and mathematics education into a professional community that can respond to the critical needs in the field. This project seeks to build a professional community with shared understanding of the specialized content knowledge (SCK) - the special forms and ways of reasoning about mathematical knowledge used in teaching (MKT). This community will help increase the capacity for further research and development on teachers' SCK in mathematics, which has been shown to relate to student achievement. Building on the professional community's shared knowledge, the project will also work to collaboratively develop an item bank of MKT/SCK items and tasks using the platform developed by the Illustrative Mathematics group for similar task and item development for K-12 students. Better measures, with a larger item bank, will help support both the learning and assessment of teachers' MKT/SCK.

Based on theories of communities of practice, this project will bring together mathematicians and mathematics educators to build a professional community with a shared understanding of the SCK in mathematics through engaging in efforts to develop items to measure SCK and the development of a task bank. Based on the "item camps" they engaged with to develop prior measures, the project will host twelve 4-day camps with varying themes for pairs of faculty and teachers or graduate students, ensuring a mix of mathematicians and educators. This work will lead to a certification for MKT/SCK. They will also develop approximately 60 items and have a mechanism for the future review and publishing of items. Using case-study methodologies, the project will study the development of these partnerships and the professional communities within and across the camps.

Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

Student-Adaptive Pedagogy for Elementary Teachers: Promoting Multiplicative and Fractional Reasoning to Improve Students' Preparedness for Middle School Mathematics

The project develops a teacher professional development intervention to support student-adaptive pedagogy for multiplicative and fractional reasoning. The idea is that classroom instruction should build on students' current conceptions and experiences. It focuses on students from urban, underserved and low-socioeconomic status populations who often fall behind in the elementary grades and are left underprepared for middle grades mathematics.

Lead Organization(s): 
Award Number: 
1503206
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project develops a teacher professional development intervention to support student-adaptive pedagogy for multiplicative and fractional reasoning. The idea is that classroom instruction should build on students' current conceptions and experiences. The context for the study is grades 3-5 teachers in Aurora Public Schools. It focuses on students from urban, underserved and low-socioeconomic status populations who often fall behind in the elementary grades and are left underprepared for middle grades mathematics. It includes a summer workshop and academic year follow-up including teacher collaboration. The project provides tools for capitalizing on successful, school-based research for promoting teachers' buy-in, adoption, and sustaining of student-adaptive pedagogy. The project also includes measurement of student understanding of the concepts. An extensive plan to share tools and resources for teachers and instructional coaches (scalable to district/state levels) and of research instruments and findings, will promote sharing project outcomes with a wide community of stakeholders (teachers, administrators, researchers, parents, policy makers) responsible for students' growth. This is a Full Design & Development project within the DRK-12 Program's Learning Strand. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project aims to implement and study a professional development intervention designed to shift upper-elementary teachers' mathematics teaching toward a constructivist approach, called student-adaptive pedagogy (AdPed), which adapts teaching goals and activities based on students' conceptions and experiences. The project focuses on multiplicative and fractional reasoning--critical for students' success in key areas of middle school mathematics (e.g., ratio, proportion, and function). The project seeks to design an instrument for measuring teachers' implementation of AdPed, a clinical interview rubric for students' multiplicative reasoning and then an analysis of teachers' content knowledge and the implementation of AdPed following the professional development. The research design is rooted in an innovative, cohesive framework that integrates four research-based components: (i) a model of mathematics learning and knowing, (ii) models of progressions in students' multiplicative and fractional reasoning, (iii) a model of teaching (AdPed) to promote such learning, and (iv) a mathematics teacher development continuum. Capitalizing on successful preliminary efforts in the Denver Metro area to refine a PD intervention and student-adaptive tools that challenge and transform current practices, the project will first validate and test instruments to measure (a) teacher growth toward adaptive pedagogy and (b) students' growth in multiplicative reasoning. Using these new instruments, along with available measures, the project will then promote school-wide teacher professional development (grades 3-5) in multiple schools in an urban district with large underserved student populations and study the professional development benefits for teacher practices and student outcomes. The mixed methods study includes classroom-based data (e.g., video analysis, lesson observations, teacher interviews) and measures of students' multiplicative reasoning specifically and mathematical understanding generally.

Visual Access to Mathematics: Professional Development for Teachers of English Learners

This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics.

Award Number: 
1503057
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The demands placed on mathematics teachers of all students have increased with the introduction of college and career readiness standards. At the same time, the mathematics achievement of English Language Learners (ELLs) lags behind that of their peers. This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics. The project will study how to enhance teachers' pedagogical content knowledge that is critical to fostering ELLs' mathematical problem solving and communication to help support fluency in using VRs among teachers and students. To broaden the participation of students who have traditionally not demonstrated high levels of achievement in mathematics, a critical underpinning to further success in the sciences and engineering, there will need to be greater support for teachers of these students using techniques that have been demonstrated to improve student learning. 

The project will use an iterative design and development process to develop a blended learning model of professional development on using VRs with a 30-hour face-to-face summer institute and sixteen 2-hour online learning sessions. Teachers and teacher-leaders will help support the development of the professional development materials. A cluster randomized control trial will study the piloting of the materials and their impact on teacher outcomes. Thirty middle schools from Massachusetts and Maine serving high numbers of ELLs, with approximately 120 teachers, will be randomly assigned to receive the treatment or control conditions. Using a two-level random intercepts hierarchical linear model, the study will explore the impact of participation in the professional development on teachers' mathematical knowledge for teaching and instructional practice. The pilot study will also explore the feasibility of delivering the professional development model more broadly. It builds on prior work that has shown efficacy in geometry, but expands the work beyond a single area in mathematics. At the same time, they will test the model for feasibility of broad implementation.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.


Project Videos

2019 STEM for All Video Showcase

Title: Designing PD for Math Educators of Students Who are ELs

Presenter(s): Peter Tierney-Fife, Pamela Buffington, Josephine Louie, Jill Neumayer Depiper, & Johannah Nikula

2016 STEM for All Video Showcase

Title: Visual Access to Mathematics: Supporting Teachers of ELs

Presenter(s): Johannah Nikula, Pam Buffington, Mark Driscoll & Peter Tierney-Fife


Teachers with GUTS: Developing Teachers as Computational Thinkers Through Supported Authentic Experiences in Computing Modeling and Simulation

This project directly addresses middle school teachers' understanding, practice, and teaching of modern scientific practice. Using the Project GUTS program and professional development model as a foundation, this project will design and develop a set of Resources, Models, and Tools (RMTs) that collectively form the basis for a comprehensive professional development (PD) program, then study teachers' experiences with the RMTs and assess how well the RMTs prepared teachers to implement the curriculum.

Lead Organization(s): 
Award Number: 
1503383
Funding Period: 
Mon, 06/01/2015 to Thu, 06/30/2016
Full Description: 

This project addresses the need for a computationally-enabled STEM workforce by equipping teachers with the skills necessary to prepare students for future endeavors as computationally-enabled scientists and citizens, and by investigating the most effective ways to provide this instruction to teachers. The project also addresses the immediate challenge presented by the Next Generation Science Standards to prepare middle school science teachers to implement rich computational thinking (CT) experiences, such as the use, creation and analysis of computer models and simulations, within science classes. 

The project, a partnership between the Santa Fe Institute and the Santa Fe Public School District, directly addresses middle school teachers' understanding, practice, and teaching of modern scientific practice. Using the Project GUTS program and professional development model as a foundation, this project will design and develop a set of Resources, Models, and Tools (RMTs) that collectively form the basis for a comprehensive professional development (PD) program, then study teachers' experiences with the RMTs and assess how well the RMTs prepared teachers to implement the curriculum. The PD program includes: an online PD network; workshops; webinars and conferences; practicum and facilitator support; and curricular and program guides. The overall approach to the project is design based implementation research (DBIR). Methods used for the implementation research includes: unobtrusive measures such as self-assessment sliders and web analytics; the knowledge and skills survey (KS-CT); interviews (teachers and the facilitators); analysis of teacher modified and created models; and observations of practicum and classroom implementations. Data collection and analysis in the implementation research serve two purposes: a) design refinement and b) case study development. The implementation research employs a mixed-method, nonequivalent group design with embedded case studies.

View videos from their Foundations unit:

 

Pages

Subscribe to Workshop