Preparing Urban Middle Grades Mathematics Teachers to Teach Argumentation Throughout the School Year

The objective of this project is to develop a toolkit of resources and practices that will help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas.

Full Description

The project is an important study that builds on prior research to bring a comprehensive professional development program to another urban school district, The District of Columbia Public Schools. The objective of this full research and development project is to develop a toolkit  that provides resources and practices for inservice middle grades mathematics teachers to support mathematical argumentation throughout the school year. Mathematical argumentation, the construction and critique of mathematical conjectures and justifications, is a fundamental disciplinary practice in mathematics that students often never master. Building on a proof of concept of the project's approach ifrom two prior NSF-funded studies, this project expands the model to help teachers support mathematical argumentation all year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas. Demonstrating this program in the nation's capital will likely attract broad interest and produces important knowledge about how to implement mathematical practices in urban settings. Increasing mathematical argumentation in schools has the potential for dramatic contributions to students' achievement and participation in 21st century workplaces.

Mathematical argumentation is rich discussion in which students take on mathematical authority and co-construct conjectures and justifications. For many teachers, supporting such discourse is challenging; many are most comfortable with Initiate-Respond-Evaluate types of practices and/or have insufficient content understanding. The professional development trains teachers to be disciplined improvisers -- professionals with a toolkit of tools, knowledge, and practices to be deployed creatively and responsively as mathematical argumentation unfolds. This discipline includes establishing classroom norms and planning lessons for argumentation. The model's theory of action has four design principles: provide the toolkit, use simulations of the classroom to practice improvising, support learning of key content, and provide job-embedded, technology-enabled supports for using new practices all year. Three yearlong studies will address design, feasibility, and promise. In Study 1 the team co-designs tools with District of Columbia Public Schools staff. Study 2 is a feasibility study to examine program implementation, identify barriers and facilitators, and inform improvements. Study 3 is a quasi-experimental pilot to test the promise for achieving intended outcomes: expanding teachers' content knowledge and support of mathematical argumentation, and increasing students' mathematical argumentation in the classroom and spoken argumentation proficiency. The studies will result in a yearlong professional development program with documentation of the theory of action, design decisions, pilot data, and instrument technical qualities.


Project Videos

2016 STEM for All Video Showcase

Title: Mathematical Argumentation in Urban Middle-School Classroom

Presenter(s): Jennifer Knudsen & Ken Rafanan


PROJECT KEYWORDS

Project Materials