Activity

Expanding PhET Interactive Science Simulations to Grades 4-8: A Research-Based Approach

Colorado’s PhET project and Stanford’s AAALab will develop and study learning from interactive simulations designed for middle school science classrooms. Products will include 35 interactive sims with related support materials freely available from the PhET website; new technologies to collect real-time data on student use of sims; and guidelines for the development and use of sims for this age population. The team will also publish research on how students learn from sims.

Project Email: 
Lead Organization(s): 
Award Number: 
1020362
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Project Evaluator: 
Stephanie Chasteen
Full Description: 

In this DRK12 project, the PhET Interactive Simulations group at the University of Colorado and the AAALab at Stanford University are working together to produce and study learning from interactive simulations designed for middle school science classrooms. We are developing a suite of 35 high-quality, interactive simulations covering physical science topics. These simulations include innovative technologies that provide teachers with real-time, formative feedback on how their students are using the simulations.  The research investigates how various characteristics of the simulation design influence student engagement and learning, and how this response varies across grade-level and diverse populations. The research also includes an investigation of different ways of using simulations in class, and how these approaches affect student preparation for future learning when they are no longer using a given simulation.

      The original PhET simulations were designed for college use, but overtime, they have migrated to lower grades.  The current suite of free research-based, interactive PhET science simulations are used over 10 million times per year.  To optimize their utility for middle school science, we are conducting interviews with diverse 4-8th graders using 25 existing PhET simulations to help identify successful design alternatives where needed, and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies are investigating a variety of lesson plans to identify the most promising approach. These studies include controlled comparisons that collect both qualitative and quantitative data.

      On the basis of our emerging design principles, we are developing 10 new simulations in consultation with teachers, who are helping to identify high need areas for simulations. These new simulations also include a back-end data collection capability that can collect, aggregate, and display student patterns of simulation use for teachers and researchers. The design of the data collection and presentation formats depends on an iterative process done in collaboration with teachers to identify the most useful information and display formats. A final evaluation compares student learning with and without this back-end formative assessment technology.   

This project is working to transform the way science is taught and learned in Grades 4-8 so that it is more effective at promoting scientific thinking and content learning, while also being engaging to diverse populations. The project is expected to impact many, many thousands of teachers and students through its production of a suite of 35 free, interactive science simulations optimized for Grades 4-8 along with “activity templates”, guidance, and real time feedback to teachers to support pedagogically effective integration into classrooms. Finally, the intellectual merit of the project is its significant contributions to understanding when, how, and why interactive simulations can be effective learning and research tools.

Embodied STEM Learning Across Technology-Based Learning Environments

This project conducts interdisciplinary research to advance understanding of embodied learning as it applies to STEM topics across a range of current technology-based learning environments (e.g., desktop simulations, interactive whiteboards, and 3D interactive environments). The project has two central research questions: How are student knowledge gains impacted by the degree of embodied learning and to what extent do the affordances of different technology-based learning environments constrain or support embodied learning for STEM topics?

Lead Organization(s): 
Award Number: 
1020367
Funding Period: 
Sun, 08/15/2010 to Sun, 07/31/2011
Project Evaluator: 
Susan Haag
Full Description: 

This project conducts interdisciplinary research to advance understanding of embodied learning as it applies to STEM topics across a range of current technology-based learning environments (e.g., desktop simulations, interactive whiteboards, and 3D interactive environments). The project builds on extensive research, including prior work of the PIs, regarding both embodied learning and statistical learning. The PIs describe embodied learning as engaging the neuromuscular systems of learners as they interact with the world around them visually, aurally, and kinesthetically in order to construct new knowledge structures. Statistical learning is described as the ability to learn, often without intent, which sequences of stimuli are consistent with a set of rules. An example of statistical learning is pattern recognition, which is central to mastery of complex topics in many STEM disciplines including physics and mathematics.

The project has two central research questions: How are student knowledge gains impacted by the degree of embodied learning and to what extent do the affordances of different technology-based learning environments constrain or support embodied learning for STEM topics? To investigate these questions, the PIs are conducting three series of experiments in five phases using two physics topics. The first four phases are developmental and the final phase implements and assesses the two modules in schools (20 plus teachers, 700 plus K-12 students) in Arizona and New York (15 total sites, 10 plus public schools, minimum one Title I school).

The aim of this project is to meld these two research trajectories to yield two key outcomes: 1) basic research regarding embodiment and statistical learning that can be applied to create powerful STEM learning experiences, and 2) the realization of exemplary models and principles to aid curriculum and technology designers in creating learning scenarios that take into account the level of embodiment that a given learning environment affords.

DRK12-Biograph: Graphical Programming for Constructing Complex Systems Understanding in Biology

This project will investigate how complex systems concepts supported by innovative curricular resources, technology applications and a comprehensive research and development structure can assist student learning in the domain of biology by providing a unifying theme across scales of time and space. The project seeks to address four areas of critical need in STEM education: biological sciences, complex systems, computational modeling, and equal access for all.

Award Number: 
1019228
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
David Reider
Full Description: 

This proposal outlines a research and development project that investigates how complex systems concepts supported by innovative curricular resources, technology applications and a comprehensive research and development structure can assist student learning in the domain of biology by providing a unifying theme across scales of time and space. The project seeks to address four areas of critical need in STEM education: biological sciences, complex systems, computational modeling, and equal access for all. This proposal explores how these needs are addressed through a curricular and technological intervention that structures biology learning through the framework of complex systems and computational modeling. The primary partners are the Massachusetts Institute of Technology and the University of Pennsylvania, working with eight teachers in four schools in the Boston area.

The project integrates graphical programming and simulation software, StarLogo TNG, into the standard high school biology curriculum to improve learning of biology concepts through the introduction and understanding of core complex systems processes. Instead of learning biology in discrete chunks, the chosen biological topics are connected through the framework of complex systems, and successively build in complexity from the basic building blocks of life to the interdependence and sustainability of life forms. This approach is designed to help students understand how processes at one level are connected to those at another level. The research is designed to answer the following questions: 1. Does a learning progression based on the complex systems ideas of scale and emergence enable students to make connections across biological topics, remediate known misconceptions, and apply core complex systems principles better than traditional instructional sequences? 2. What are the on-going affordances and constraints of implementation taking into consideration structural, functional and behavioral variables and what changes to project activities yield increased implementation and learning capacities? 3. Does programming of simulations increase understanding of complex systems and biology concepts compared to use of previously constructed simulations? The evaluation is designed to collect data and provide feedback on the adherence to the plan, the implementation challenged, and how research informs development.

The project anticipates a number of deliverables towards the end of the project and beyond. These include the creation of a unified high school biology curricular sequence that builds in increasing spatial and temporal scales to deepen student understanding of four core biology topics; the production, implementation and testing of curricular activities that acknowledge and ameliorate known implementation challenges; and the development of curricular strategies and tools to help teachers and students improve knowledge and skills in computational modeling, computer programming and participation in the cyberinfrastructure. In order to increase ease of integration into schools, and enhance scalability, the simulation activities are facilitated by a new web-based version of StarLogo TNG that integrates the curricular materials all of which will be distributed freely. Additional dissemination strategies include a website, conferences, a newsletter, community activities, active dissemination, and academic presentations.

Math Snacks: Addressing Gaps in Conceptual Mathematics Understanding with Innovative Media

This project is developing and evaluating effectiveness of 15 - 20 short computer mediated animations and games that are designed to: (1) increase students' conceptual understanding in especially problematic topics of middle grades mathematics; and (2) increase students' mathematics process skills with a focus on capabilities to think and talk mathematically.

Lead Organization(s): 
Award Number: 
0918794
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Sheila Cassidy WEXFORD INC.
Full Description: 

View a project spotlight on Math Snacks.

This project Math Snacks: Addressing Gaps in Conceptual Mathematics Understanding with Innovative Media, led by mathematics and education faculty at New Mexico State University, is developing and evaluating effectiveness of 15 - 20 short computer mediated animations and games that are designed to: (1) increase students' conceptual understanding in especially problematic topics of middle grades mathematics; and (2) increase students' mathematics process skills with a focus on problem-solviing and communicating mathematically. The basic research question for this project is whether the planned collection of computer-mediated animations and games can provide an effective strategy for helping students learn core middle grades mathematics concepts in conceptual areas that research suggests are difficult for these students.  A second question relates to types of delivery that are effective for mathematics learning using these tools including in classrooms during extended learning time at home or in informal educational settings. The project is developing and testing the effectiveness of a set of such learning tools and companion print materials, including student and teacher guides, and short video clips documenting best practices by  teachers using the developed materials with students. A pilot study in year 3 and a substantial randomized control trial in year 4 will test the effects of using the Math Snacks web-based and mobile technologies on student learning and retention of identified core middle school mathematics concepts, as measured by performance on disaggregated strands of the New Mexico state standardized mathematics assessments. Thus the project will produce animations and games using the web and new mobile technologies, and useful empirical evidence about the efficacy of their use. One of the key features of the Math Snacks project is development of the mediated games and simulations in a form that can be used by students outside of normal classroom settings on media and game players that are ubiquitous and popular among today's young people. Thus the project holds the promise of exploiting learning in informal settings to enhance traditional school experiences.

Data Games: Tools and Materials for Learning Data Modeling (Collaborative Research: Finzer)

The Data Games project has developed software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and test their strategies in another round of the game.

Project Email: 
Lead Organization(s): 
Award Number: 
0918735
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
James Hammerman
Full Description: 

Students playing computer games generate large quantities of rich, interesting, highly variable data that mostly evaporate when the game ends. What if in a classroom setting, data from games students played remained accessible to them for analysis? In software and curriculum materials developed by the Data Games project at UMass Amherst and KCP Technologies, data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and try their strategies in another round of the game.

 

The video games are embedded in an online data analysis learning environment that is based on desktop software tools Fathom® Dynamic Data and Tinkerplots® Dynamic Data Exploration, widely used in grades 5–8 and 8–14 respectively. The game data appear in graphs and tables in real time, allowing several cycles of strategy improvement in a short time. The games are designed so that these cycles improve understanding of specific data modeling and/or mathematics concepts.

 

The research strand of the Data Games project focuses on students’ creation of data representations that model a real-world context. Findings from this research have been incorporated into the design of the data structures in the software.

Engaging Youth in Engineering Module Study

This project is revising and field testing six existing modules and developing, pilot testing, and field testing two engineering modules for required middle school science and mathematics classes: Catch Me if You Can! with a focus on seventh grade life science; and Creating Bioplastics targeting eighth grade physical science. Each module addresses an engineering design challenge of relevance to industries in the region and fosters the development of engineering habits of mind.

Award Number: 
0918769
Funding Period: 
Tue, 09/15/2009 to Sun, 08/31/2014
Project Evaluator: 
James Van Haneghan

Content Mentoring and Its Impact on Middle Grades Mathematics and Science Teacher Effectiveness

This project tests whether mentoring middle school science and math teachers by University Ph.D. STEM faculty has a positive effect on the teachers' understanding of science, their teaching ability and the learning outcomes of their students. The goal of this research study is to strengthen the theoretical underpinning of best practices in middle grades math and science teaching and to enhance the knowledge base for teacher recruitment, preparation, induction and retention.

Award Number: 
0554441
Funding Period: 
Sat, 07/01/2006 to Thu, 06/30/2011

The Scientific Thinker Project: A Study of Teaching and Learning Concepts of Evidence and Nature of Scientific Evidence in Elementary School

Current curriculum materials for elementary science students and teachers fail to provoke the following essential questions during science instruction: What is evidence? Why do you need evidence? The goal of this project is to identify whether and how elementary school students formulate answers to these questions and develop concepts of evidence and understandings of the nature of scientific evidence.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0918533
Funding Period: 
Sat, 08/01/2009 to Sat, 07/31/2010

Chemistry Facets: Formative Assessment to Improve Student Understanding in Chemistry

This project implemented a facets-of-thinking perspective to design tools and practices to improve high school chemistry teachers' formative assessment practices. Goals are to identify and develop clusters of facets related to key chemistry concepts; develop assessment items; enhance the assessment system for administering items, reporting results, and providing teacher resource materials; develop teacher professional development and resource materials; and examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.

Partner Organization(s): 
Award Number: 
0733169
Funding Period: 
Sat, 09/15/2007 to Wed, 08/31/2011
Project Evaluator: 
Heller Research Associates
Full Description: 

Supported by research on students' preconceptions, particularly in chemistry, and the need to build on the knowledge and skills that students bring to the classroom, this project implements a facets-of-thinking perspective for the improvement of formative assessment, learning, and instruction in high school chemistry. Its goals are: to identify and develop clusters of facets (students' ideas and understandings) related to key high school chemistry concepts; to develop assessment items that diagnose facets within each cluster; to enhance the existing web-based Diagnoser assessment system for administering items, reporting results, and providing teacher resource materials for interpreting and using the assessment data; to develop teacher professional development and resource materials to support their use of facet-based approaches in chemistry; and to examine whether student learning in chemistry improves in classes that incorporate a facet-based assessment system.

The proposed work builds on two previously NSF-funded projects focused on designing Diagnoser (ESI-0435727) in the area of physics and on assessment development to support the transition to complex science learning (REC-0129406). The work plan is organized in three strands: (1) Assessment Development, consisting of the development and validation of facet clusters related to the Atomic Structure of Matter and Changes in Matter and the development and validation of question sets related to each facet cluster, including their administration to chemistry classes; (2) Professional Development, through which materials will be produced for a teacher workshop focused on the assessment-for-learning cycle; and (3) Technology Development, to upgrade the Diagnoser authoring system and to include chemistry facets and assessments.

Anticipated products include: (1) 8-10 validated facet clusters related to the Atomic Structure of Matter and Changes in Matter; (2) 12-20 items per facet cluster that provide diagnostic information about student understanding in relation to the facet clusters; (3) additional instructional materials related to each facet cluster, including 1-3 questions to elicit inital student ideas, a developmental lesson to encourage students' exploration of new concepts, and 3-5 prescriptive lessons to address persistent problematic ideas; and (4) a publically-available web-based Diagnoser for chemistry (www.Diagnoser.com), including student assessments and instructional materials.

Developing Contingent Pedagogies: Integrating Technology-enhanced Feedback into a Middle School Science Curriculum to Improve Conceptual Teaching and Learning

SRI International developed a formative assessment intervention that integrates classroom network technologies and contingent curriculum activities to help middle school teachers adjust instruction to improve student learning of Earth science concepts. The intervention was tested as part of a quasi-experimental study within an urban school district in Colorado that includes ethnically and economically diverse student populations. Findings indicate significant student learning gains for students in implementation classes as compared to students in comparison classes.

Lead Organization(s): 
Award Number: 
0822314
Funding Period: 
Mon, 09/01/2008 to Tue, 08/31/2010
Project Evaluator: 
Christy Kim Boscardin
Full Description: 

SRI is developing a formative assessment intervention that integrates existing classroom network technologies (GroupScribbles and Classroom Performance Systems), interactive formative assessments, and contingent curriculum activities to help teachers adjust instruction to improve middle school student learning of selected Earth science concepts (the rock cycle, forces that shape Earth's surface, and plate tectonics). To test the hypothesis that integrating response system technology, assessment, and curriculum can improve K-12 science teaching and learning, the project is developing and testing (1) pedagogical routines for teachers to follow when using classroom network technologies, (2) diagnostic questions for teachers to elicit student preconceptions, (3) decision rules for teachers to use alternative learning activities that supplement an existing geoscience curriculum, (4) training materials that prepare teachers to enact the intervention, and (5) research- and classroom-based instruments that measure changes in teacher instructional practice, student thinking, and student achievement. The intervention is being tested in two urban school districts located in two western states (Colorado and California) that have ethnically and economically diverse student populations.

Pages

Subscribe to Activity