Activity

Bio-Sphere: Fostering Deep Learning of Complex Biology for Building our Next Generation's Scientists

The goal of this project is to help middle school students, particularly in rural and underserved areas, develop deep scientific knowledge and knowledge of the practices and routines of science. Research teams will develop an innovative learning environment called Bio-Sphere, which will foster learning of complex science issues through hands-on design and engineering.

Award Number: 
1418044
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Today's citizens face profound questions in science. Preparing future generations of scientists is crucial if the United States is to remain competitive in a technology-focused economy. The biological sciences are of particular importance for addressing some of today's complex problems, such as sustainability and food production, biofuels, and carbon dioxide and its effect on our environment. Although knowledge in the life sciences is of critical importance, this is an area in which there are significantly fewer studies examining students' conceptions than in physics and chemistry. The goal of this project is to help middle school students, particularly in rural and underserved areas, develop deep scientific knowledge and knowledge of the practices and routines of science. A major strength of Bio-Sphere is the inclusion of hands-on design and engineering in biology, a field in which there are fewer instances of curricula that integrate engineering design at the middle school level. The units will enable an in-depth, cohesive understanding of science content, and Bio-Sphere will be disseminated nationally and internationally through proactive outreach to teachers as well as scholarly publications.

This project addresses the need to inculcate deep learning of complex science by bringing complex socio-scientific issues into middle school classrooms, and providing students with instructional materials that allow them to practice science as scientists do. Research teams will develop, iteratively refine and evaluate an innovative learning environment called Bio-Sphere. Bio-Sphere combines the strengths of hands-on design and engineering, engages students in the practices of science, and fosters learning of complex science issues, especially among underserved populations. Each Bio-Sphere unit presents a complex science issue in the form of a design challenge that students solve by conducting experiments, using visualizations in an electronic textbook, and connecting with the community. The units, aligned with the Next Generation Science Standards, provide greater coherence, continuity, and sustained instruction focused on uncovering and integrating key ideas over long periods of time. The project will follow a design-based research methodology. In Phase 1, the Bio-Sphere materials will be developed. Phase 2 will consist of studies in Wisconsin schools to generate existence proofs, i.e., examining enactments with respect to the designed objectives to understand how a design works. Phase 3 studies will focus on practical implementation: how to bring this innovative design to life in very different classroom contexts and without the everyday support of the design team, and will be conducted in rural schools in Alabama and North Carolina.

Ocean Tracks: Bringing Large-Scale Marine Science Data to and Beyond the Classroom

Day: 
Tues

Participants engage in marine data investigations using the Ocean Tracks Web interface and analysis tools, offer feedback, and discuss possible synergies with other DR K12 programs.

Date/Time: 
9:45 am to 11:45 am
2014 Session Types: 
Feedback Session (Work in Post-development)
Session Materials: 

Digital, large-scale scientific data have become broadly available in recent decades, and analyzing data, identifying patterns, and extracting useful information have become gateway skills to full participation in the 21st century workforce. Yet, pre-college classrooms are falling short in preparing students for this world and are missing opportunities to harness the power of Big Data to engage students in scientific learning. To address this issue, scientists, educators, and researchers at Education Development Center, Inc.

Developing Critical Evaluation as a Scientific Habit of Mind: Instructional Scaffolds for Secondary Earth and Space Sciences

This exploratory project develops and tests graphical scaffolds which facilitate high school students' coordination of connecting evidence with alternative explanations of particular phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry.

Lead Organization(s): 
Award Number: 
1316057
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

This exploratory project develops and tests graphical scaffolds, called model-evidence link (MEL) activities, which facilitate high school students' coordination of connecting evidence with alternative explanations of particular Earth and space sciences phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry. The project's research questions are: (1) how does year-long instruction using MEL activities change high school students' critical evaluation abilities; (2) how does use of critical evaluation promote judgment reappraisals about Earth and space science topics with large plausibility gaps; and (3) to what extent does promotion of plausibility reappraisal lead to high school students' construction and reconstruction of scientifically accurate conceptions about fundamental concepts in Earth and space sciences? The project develops three MEL activities that focus on important topics in Earth and space sciences. The topics will be hydraulic fracturing, wetlands, and lunar origin. These MELs were selected because they align with major topical units in Earth and space science (i.e., geology, water resources, and astronomy, respectively).

The project develops effective instructional tools (the MEL activities to stimulate collaborative argumentation) designed to increase high school students' critical evaluation abilities that that are central for fully engaging in these scientific and engineering practices and constructing scientifically accurate understanding. Science topics require students to effectively evaluate connections with evidence and alternative explanations. The development of MEL activities that cover major Earth and space sciences topics will assist teachers in increasing their students' critical evaluation abilities. These tools are developed in geographically diverse settings, including one school district with a Hispanic majority, to gauge their effectiveness in helping all students. Furthermore, the design-based research methods employed in the proposed study are focused on developing tools that can be easily integrated into a variety of science curricula to supplement and reinforce scientific and engineering practices, rather than wholesale replacement. The ability to be critically evaluative is essential for developing a society that characteristically exhibits scientific habits of mind and is equipped to deal with future challenges in a way that is beneficial to our nation.

Piloting Graph Literacy Activities in Maine

The goal of this project is to develop and pilot test a limited number of free computer-based instructional activities that improve student graph comprehension, aimed especially at science students in grades 7 and 8. Because of growing interest in use of online resources for teaching and learning, this work is potentially transformative for a wide range of audiences, including teachers, students, researchers, and the developers and publishers of instructional materials across vSTEM areas and grades.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1256490
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

The goal of this project is to develop and pilot test a limited number of free computer-based instructional activities that improve student graph comprehension, aimed especially at science students in grades 7 and 8. In addition, the project is developing a pilot assessment instrument focusing on students' comprehension of graphs ("graph literacy"). The activities and the assessment instrument are being pilot tested in Maine, a rural state where family income is below the national average and students are underrepresented in studying STEM topics after high school. The state has identified this topic as an important one to focus on in the coming year.

Graph literacy is the ability to identify the important features of a wide variety of graphs and relate those features to the context of the graphs. This increases the students' understanding not only of how to interpret graphs, but also of the science content. This definition of graph literacy, while based in the math and science standards, goes beyond skills tested by many assessments of graph knowledge because they focus primarily on reading points off a graph, typically a type of graph that students have studied and are familiar with. While broadening the usual definition for graph skills, the project focuses on scatter and line graphs of the type encountered in many mathematics and science courses in grades 7-12, as well as in newspapers and magazines.

Graphs are central to STEM learning in many subjects and at almost all education levels. In spite of the vital role of graphs, students at all ages demonstrate difficulties using and interpreting graphs. The computer-based Graph Literacy activities being developed are based on extensive prior research about students' use and understanding of graphs, as well as continuing advances in delivering education activities through dynamic, interactive Web pages that do not require schools to install any software. Based on the research literature, there is a consensus that students need to be taught graph literacy in three steps: identifying and encoding the important superficial features of a graph they want to understand, such as the titles, units, and axis labels; linking visual features of that graph to mathematical relationships, based on recurring patterns (e.g., linear increase or decrease); and, integrating all of these features with the context of the graph. The activities we are developing are based on this approach, as are the validated assessments being developed to measure students' graph literacy.

The project is conducting a small, randomized experimental trial of the graph literacy activities in year 2 of the project. The goal of is to determine the effectiveness of the graph literacy activities in improving students' understanding of graphs. The open source software and approaches developed under the prior grant contribute directly to the likely success of this project. Because of growing interest in use of online resources for teaching and learning, this work is potentially transformative for a wide range of audiences, including teachers, students, researchers, and the developers and publishers of instructional materials across all STEM areas and grades. The underlying software technology for Graph Literacy is being made available as open source computer code, and any activities that use the code are released under a creative commons license. As a result, the graph literacy activities, and the pilot assessment instrument, can be widely adopted at no cost.

Spatial Mathematics, Engineering, and Science: Toward an Integrated STEM Education

The goal of this project is to develop a provisional learning progression spanning grades K-5 that articulates and tests the potential of experiencing, describing, and representing space as the core of an integrated STEM education. The science of space has an extensive scope within and across disciplinary boundaries of science, mathematics and engineering; the project will create a coherent approach to elementary instruction in which mathematical reasoning about space is systematically cultivated.

Lead Organization(s): 
Award Number: 
1252875
Funding Period: 
Mon, 10/01/2012 to Mon, 09/30/2013
Full Description: 

The goal of Spatial Mathematics, Engineering, and Science: Toward an Integrated STEM Education is to develop a provisional learning progression spanning grades K-5 that articulates and tests the potential of experiencing, describing, and representing space as the core of an integrated STEM education. The science of space has an extensive scope within and across disciplinary boundaries of science, mathematics and engineering, the project will create a coherent approach to elementary instruction in which mathematical reasoning about space is systematically cultivated. Simultaneously, researchers are exploring the potential of spatial mathematics as a resource for engineering design of kinematic machines and for the development of mechanistic reasoning about the behavior of these machines. Work across these disciplines situates and motivates the mathematical work and also provides opportunities to investigate the intersections and contrasts among signature disciplinary practices, such as definition and proof in mathematics, design in engineering, and modeling in science. The research and development is being conducted in a middle school which is a full partner in the project.

In partnership, researchers and participating teachers are designing and implementing curricular approaches intended to support spatial knowledge and reasoning. Professional development will enhance and capitalize on teachers' roles as specialists in student thinking. The research consists of design studies conducted in 12 participating classrooms, K-5, and small-scale teaching experiments conducted with children across the same grade span. The research will establish provisional pathways and landmarks in learning about space, as well as the curricular activities and teacher practices necessary to support integrated STEM learning.

The project is novel in three ways. First, it provides children with early and systematic access to multiple geometries (e.g., plane, cylinder, sphere) to develop sophisticated understandings of powerful, yet experientally accessible concepts, such as straight, and STEM-related practices, such as model, definition and proof. Second, both the National Research Council Science/Engineering and the Common Core State Standards Mathematics highlight the role of practices in the development of disciplinary knowledge, and this project is providing a practical avenue for coordinating the co-development of disciplinary practices and knowledge. Third, the unifying theme of space is threaded through problems and contexts in mathematics, science and engineering, which provide a sound basis for generative STEM integration-integration that does not lose sight of the distinctive practices in different disciplines, but, instead, leverages these distinctions to produce multiple ways of knowing about space. Research and development is being conducted with underrepresented populations of students who are typically underserved in STEM education. Although the numbers of students reached in this phase of the work are relatively modest, the longer-term potential is great, because instruction anchored in space may be more accessible to students who struggle with traditional forms of mathematics education. The increased attention to integrated STEM education at the national level also ensures that this effort is likely to contribute to the knowledge base required to advance interdisciplinary forms of schooling.

Transforming STEM Competitions into Collaboratives: Developing eCrafting Collabs for Learning with Electronic Textiles

This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators.

Lead Organization(s): 
Award Number: 
1238172
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences.

The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility.

This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.

Sensing Science: Temperature and Heat Readiness for Early Elementary Students

Concord Consortium is exploring K-2 students' understanding of heat and temperature in two Massachusetts school districts using sensors that display temperatures as colors. Exploration activities are being created, and students are being videotaped carrying out the activities. Students complete a short assessment for each activity. The exploration activities, assessments, and project data are available via open source through a website at Concord Consortium and are being presented to multiple professional audiences.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222892
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

Concord Consortium is exploring K-2 students' understanding of heat and temperature in two Massachusetts school districts using sensors that display temperatures as colors. The project is investigating the following research questions:

- How can visualizations, data collection linked to everyday experiences, and student reflection integrated into creative exploration address student preconceptions and promote K-2 student understanding of temperature and heat?

- How can the use of replay of video and reflection aid in addressing K-2 student preconceptions and improve student understanding of heat and temperature?

- Can the use of visualizations and data collection via digital sensing technology advance K-2 students past the goals of the K-2 science frameworks?

The project is being implemented in 10 classrooms for about 250 children representing diverse populations. Exploration activities are being created, and students are being videotaped carrying out the activities. Students complete a short assessment for each activity. Project staff will revisit the videos with the students to explore student concepts at a deeper level. David Reider of Education Design Inc. is conducting the evaluation which will focus on 1) program efficacy and design and 2) alignment with research design. It is formative in design with annual summative reports. From their data, the project is constructing a progressive hierarchy of student theories of heat and temperature. The project is also producing a protocol that teachers can use to have better dialogues with children that support children's reconstruction of their initial conceptions. The exploration activities, assessments, and project data are available via open source through a website at Concord Consortium and are being presented to multiple professional audiences.

Learning Mathematics of the City in the City

This project is developing teaching modules that engage high school students in learning and using mathematics. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation helps students connect their everyday and school mathematical thinking. Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222430
Funding Period: 
Sat, 09/01/2012 to Mon, 08/31/2015
Full Description: 

Learning Mathematics of the City in The City is an exploratory project that is developing teaching modules that engage high school students in learning mathematics and using the mathematics they learn. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation is helping students connect their everyday and school mathematical thinking.

Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools. Specifically, researchers want to understand how place-based learning helps students apply mathematics to address questions about their local environment. Researchers are also learning about the opportunities for teaching mathematics using carefully planned lessons enhanced by geo-spatial technologies. Data are being collected through student interviews, classroom observations, student questionnaires, and student work.

As the authors explain, "The use of familiar or engaging contexts is widely accepted as productive in the teaching and learning of mathematics." By working in urban neighborhoods with large populations of low-income families, this exploratory project is illustrating what can be done to engage students in mathematics and mathematical thinking. The products from the project include student materials, software adaptations, lesson plans, and findings from their research. These products enable further experimentation with place-based mathematics learning and lead the way for connecting mathematical activities in school and outside of school.

Unifying Life: Placing Urban Tree Diversity in an Evolutionary Context

This 3-year project seeks to develop and test curricular resources built around handheld mobile technology to study how these materials foster urban middle school student engagement with and learning of local biodiversity and the patterns of evolution.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1221188
Funding Period: 
Sun, 07/15/2012 to Tue, 06/30/2015
Full Description: 

City College of New York (CUNY) is conducting a 3-year exploratory project to develop and test curricular resources built around handheld mobile technology to study how these materials foster urban middle school student interest and engagement with local biodiversity and the patterns of evolution. The project aims to develop curricular resources for middle school students around Leafsnap, an iPhone tree identification app, through a co-design process; to pilot test curricular resources in the classrooms of three New York middle school teachers; to develop and revise assessment tools to measure student outcomes; and to field-test curricular resources in the classrooms of ten New York middle school teachers and analyze results to determine how the Leafsnap curriculum affects urban middle school student learning of biodiversity and the patterns of evolution. The results will be used to modify and disseminate curriculum online with the Leafsnap app.

During the project's first year, the curricular resources will be used in two East Harlem middle schools. In the second year, the resources will be used in the classrooms of ten New York City (NYC) public middle school teachers. In the third year, these resources will be integrated into a life science for middle school teachers course as part of CUNY's graduate program in secondary science education, a program specifically designed to prepare teacher candidates for careers in NYC public middle schools. Also, in the project's third year, the curricular resources will be disseminated through the Leafsnap website to a wider online audience.

The project advances understanding of underrepresented urban middle school student learning of local biodiversity in a historical evolutionary context by addressing the three major dimensions of the new Framework for K-12 Science Learning: core science content, the practice of science, and concepts that crosscut all scientific disciplines. Pre- and post-treatment clinical interviews with students will be conducted to provide qualitative insights into how use of the Leafsnap curriculum impacts students' understanding and motivation for identifying and organizing tree diversity.

Modeling Hydrologic Systems in Elementary Science (MoHSES)

This project investigates 3rd-grade students' model-based reasoning about hydrologic systems and how teachers scaffold students' engagement in modeling practices. The research builds upon existing modeling frameworks to guide the development and integration of a long-term conceptual modeling task into the Full Option Science System (FOSS) Water module. The data collected from this project can help inform science curriculum materials development and elementary teacher preparation efforts designed to foster reform-oriented, model-centered elementary science learning environments.

Award Number: 
1443223
Funding Period: 
Sat, 09/01/2012 to Thu, 08/31/2017
Project Evaluator: 
UNL Center for Research on Children, Youth, Families, & Schools
Full Description: 

The Modeling Hydrologic Systems in Elementary Science (MoHSES) project involves research and development to investigate 3rd-grade students' model-based reasoning about hydrologic systems and how teachers scaffold students' engagement in modeling practices. The research builds upon existing modeling frameworks to guide the development and integration of a long-term conceptual modeling task into the Full Option Science System (FOSS) Water module. The participants in the study include ten 3rd-grade elementary teachers recruited from diverse settings. The team utilizes an extensive classroom observation system, in-depth interviews with students and teachers, and student artifacts to investigate the following research questions: (1) How do 3rd-grade students construct, use, evaluate, and revise conceptual models of groundwater systems to reason about geospheric components of the water cycle? (2) Are 3rd-grade students able to construct more scientifically-accurate models of groundwater cycling over time? (3) What instructional strategies do 3rd-grade teachers use to support students' model-based reasoning about groundwater systems?

This research can help build a foundation in model-based reasoning about complex global environmental and scientific phenomena in early learners. Investigations of elementary students' model-based reasoning about the water cycle, are largely absent from the literature. The data collected from this project can help inform science curriculum materials development and elementary teacher preparation efforts designed to foster reform-oriented, model-centered elementary science learning environments. This research also informs the development of learning progressions that account for elementary students' learning within a core component of the Earth Sciences.

Pages

Subscribe to Activity