Grounded Theory

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Danish)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908632
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Enyedy)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908791
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Developing and Investigating Unscripted Mathematics Videos

This project will use an alternative model for online videos to develop video units that feature the unscripted dialogue of pairs of students. The project team will create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level.

Lead Organization(s): 
Award Number: 
1907782
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

This project responds to the recent internet phenomenon of widespread accessibility to online instructional videos, which offer many benefits, such as student control of the pace of learning. However, these videos primarily focus on a single speaker working through procedural problems and providing an explanation. While the immense reach of free online instructional videos is potentially transformative, this potential can only be attained if access transcends physical availability to also include entry into important disciplinary understandings and practices, and only if the instructional method pushes past what would be considered outdated pedagogy in any other setting than a digital one. This project will use an alternative model for online videos, originally developed for a previous exploratory project, to develop 6 video units that feature the unscripted dialogue of pairs of students. The project team will use the filming and post-production processes established during the previous grant to create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level. They will also conduct 8 research studies to investigate the promise of these unscripted dialogic videos with a diverse population to better understand the vicarious learning process, which refers to learning from video- or audio-taped presentations of other people learning. Additionally, the project team will provide broader access to the project videos and support a variety of users, by: (a) subtitling the videos and checking math task statements for linguistic accessibility; (b) representing diversity of race, ethnicity, and language in both the pool of students who appear in the videos and the research study participants; (c) providing teachers with an array of resources including focus questions to pose in class with each video, printable task worksheets, specific ways to support dialogue about the videos, and alignment of the video content with Common Core mathematics standards and practices; and (d) modernizing the project website and making it functional across a variety of platforms.

The videos created for this project will feature pairs of students (called the talent), highlighting their unscripted dialogue, authentic confusion, and conceptual resources. Each video unit will consist of 7 video lessons (each split into 4-5 short video episodes) meant to be viewed in succession to support conceptual development over time. The project will build upon emerging evidence from the exploratory grant that as students engage with videos that feature peers grappling with complex mathematics, they can enter a quasi-collaborative relationship with the on-screen talent to learn complex conceptual content and engage in authentic mathematical practices. The research focuses on the questions: 1. What can diverse populations of vicarious learners learn mathematically from dialogic videos, and how do the vicarious learners orient to the talent in the videos? 2. What is the nature of vicarious learners' evolving ways of reasoning as they engage with multiple dialogic video lessons over time and what processes are involved in vicarious learning? and, 3. What instructional practices encourage a classroom community to adopt productive ways of reasoning from dialogic videos? To address the first question, the project team will conduct two Learning Outcomes and Orientation Studies, in which they analyze students' learning outcomes and survey responses after they have learned from one of the video units in a classroom setting. Before administering an assessment to a classroom of students, they will first conduct an exploratory Interpretation Study for each unit, in which they link the mathematical interpretations that VLs generate from viewing the project videos with their performance on an assessment instrument. Both types of studies will be conducted twice, once for each of two video units - Exponential Functions and Meaning and Use of Algebraic Symbols. For the second research question, the project team will identify a learning trajectory associated with each of four video units. These two learning trajectories will inform the instructional planning for the classroom studies by identifying what meaningful appropriation can occur, as well as conceptual challenges for VLs. By delivering learning trajectories for two additional units, the project can contribute to vicarious learning theory by identifying commonalities in learning processes evident across the four studies. For the final research question, the project team will investigate how instructors can support students with the instrumental genesis process, which occurs through a process called instrumental orchestration, as they teach the two videos on exponential functions and algebraic symbols.

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

Award Number: 
1908900
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

California State University will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities (NIC sites). Networked Improvement Community (NIC) will co-create a shared vision and co-defined research agenda between university researchers, science educators and school district practitioners working together to reform teacher education across a variety of local contexts. By studying outcomes of shared supports and teacher tools for use in multiple steps along the science teacher education pathway, researchers will map variation existing in the system and align efforts across the science teacher education pathway. This process will integrate an iterative nature of educational change in local contexts impacting enactment of the NGSS in both university teacher preparation programs and in school district professional training activities and classrooms.

The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts. The project will accomplish this goal 1) leveraging the use of an established Networked Improvement Community, composed of science education faculty from eight university campuses and by 2) improving and studying coherence in the steps along the science teacher education pathway within and across these universities and school districts. The project will use a mixed methods approach to data collection and analysis. Consistent with Improvement Science Theory, research questions will be co-defined by all stakeholders.

Using Animated Contrasting Cases to Improve Procedural and Conceptual Knowledge in Geometry

This project aims to support stronger student outcomes in the teaching and learning of geometry in the middle grades through engaging students in animated contrasting cases of worked examples. The project will design a series of animated geometry curricular materials on a digital platform that ask students to compare different approaches to solving the same geometry problem. The study will measure changes in students' procedural and conceptual knowledge of geometry after engaging with the materials and will explore the ways in which teachers implement the materials in their classrooms.

Award Number: 
1907745
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

This project aims to support stronger student outcomes in the teaching and learning of geometry in the middle grades through engaging students in animated contrasting cases of worked examples. Animated contrasting cases are a set of two worked examples for the same geometry problem, approached in different ways. The animations show the visual moves and annotations students would make in solving the problems. Students are asked to compare and discuss the approaches. This theoretically-grounded approach extends the work of cognitive scientists and mathematics educators who have shown this approach supports strong student learning in algebra. The project will design a series of animated geometry curricular materials on a digital platform that ask students to compare different approaches to solving the same geometry problem. The study will measure changes in students' procedural and conceptual knowledge of geometry after engaging with the materials and will explore the ways in which teachers implement the materials in their classrooms. This work is particularly important as geometry is an understudied area in mathematics education, and national and international assessments at the middle school level consistently identify geometry as a mathematics content area in which students score the lowest.

This project draws on prior work that documents the impact of comparison on students' learning in algebra. Providing students with opportunities to compare multiple strategies is recommended by a range of mathematics policy documents, as research has shown this approach promotes flexibility and enhances conceptual knowledge and procedural fluency. More specifically, the approach allows students to compare the effectiveness and efficiency of mathematical arguments in the context of problem solving. An initial pilot study on non-animated contrasting cases in geometry shows promise for the general approach and suggests that animating the cases has the potential for stronger student learning gains. This study will examine the extent to which the animated cases improve students' conceptual and procedural knowledge of geometry and identify factors that relate to changes in knowledge. The project team will develop 24 worked example contrasting cases based on design principles from the prior work in algebra. The materials will be implemented in four treatment classrooms in the first cycle, revised, and then implemented in eight treatment classrooms. Students' written work will be collected along with data on the nature of the classroom discussions and small-group interviews with students. Teachers' perspectives on lessons will also be collected to support revision and strengthening of the materials. Assessments of students' geometry knowledge will be developed using measures with demonstrated validity and reliability to measure changes in student learning.

Engaging High School Students in Computer Science with Co-Creative Learning Companions (Collaborative Research: Magerko)

This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages learners in making music with JavaScript or Python code.

Award Number: 
1814083
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 
This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages over 160,000 learners worldwide in making music with JavaScript or Python code. The researchers will build the first co-creative learning companion, Cai, that will scaffold students with pedagogical strategies that include making use of learner code to illustrate abstraction and modularity, suggesting new code to scaffold new concepts, providing help and hints, and explaining its decisions. This work will directly address the national need to develop computing literacy as a core STEM skill.
 
The proposed work brings together an experienced interdisciplinary team to investigate the hypothesis that adding a co-creative learning companion to an expressive computer science learning environment will improve students' computer science learning (as measured by code sophistication and concept knowledge), positive attitudes towards computing (self-efficacy and motivation), and engagement (focused attention and involvement during learning). The iterative design and development of the co-creative learning companion will be based on studies of human collaboration in EarSketch classrooms, the findings in the co-creative literature and virtual agents research, and the researchers' observations of EarSketch use in classrooms. This work will address the following research questions: 1) What are the foundational pedagogical moves that a co-creative learning companion for expressive programming should perform?; 2) What educational strategies for a co-creative learning companion most effectively scaffold learning, favorable attitudes toward computing, and engagement?; and 3) In what ways does a co-creative learning companion in EarSketch increase computer science learning, engagement, and positive attitudes toward computer science when deployed within the sociocultural context of a high school classroom? The proposed research has the potential to transform our understanding of how to support student learning in and broaden participation through expressive computing environments.

CAREER: Investigating Changes in Students' Prior Mathematical Reasoning: An Exploration of Backward Transfer Effects in School Algebra

This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions.

Lead Organization(s): 
Award Number: 
1651571
Funding Period: 
Sat, 07/01/2017 to Thu, 06/30/2022
Full Description: 

As students learn new mathematical concepts, teachers need to ensure that prior knowledge and prior ways understanding are not negatively affected. This award explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate students in four Algebra I classrooms as they learn quadratic functions. The PI will examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. More generally, this award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction. An advisory board of scholars with expertise in mathematics education, assessment, social interactions, quantitative reasoning and measurement will support the project. The research will occur in diverse classrooms and result in presentations at the annual conferences of national organizations, peer-reviewed publications, as well as a website for teachers which will explain both the theoretical model and the findings from the project. An undergraduate university course and professional development workshops using video data from the project are also being developed for pre-service and in-service teachers. Ultimately, the research findings will generate new knowledge and offer guidance to elementary school teachers as they prepare their students for algebra.

The research involves three phases. The first phase includes observations and recordings of four Algebra I classrooms and will test students' understanding of linear functions before and after the lessons on quadratic functions. This phase will also include interviews with students to better understand their reasoning about linear function problems. The class sessions will be coded for the kind of reasoning that they promote. The second phase of the project will involve four cycles of design research to create quadratic and linear function activities that can be used as instructional interventions. In conjunction with this phase, pre-service teachers will observe teaching sessions through a course that will be offered concurrently with the design research. The final phase of the project will involve pilot-applied research which will test the effects of the instructional activities on students' linear function reasoning in classroom settings. This phase will include treatment and control groups and further test the hypotheses and instructional products developed in the first two phases.

CAREER: Designing Learning Environments to Foster Productive and Powerful Discussions Among Linguistically Diverse Students in Secondary Mathematics

Lead Organization(s): 
Award Number: 
1553708
Funding Period: 
Mon, 02/01/2016 to Sun, 01/31/2021
Full Description: 

The project will design and investigate learning environments in secondary mathematics classrooms focused on meeting the needs of English language learners. An ongoing challenge for mathematics teachers is promoting deep mathematics learning among linguistically diverse groups of students while taking into consideration how students' language background influences their classroom experiences and the mathematical understandings they develop. In response to this challenge, this project will design and develop specialized instructional materials and guidelines for teaching fundamental topics in secondary algebra in linguistically diverse classrooms. The materials will incorporate insights from current research on student learning in mathematics as well as insights from research on the role of language in students' mathematical thinking and learning. A significant contribution of the work will be connecting research on mathematics learning generally with research on the mathematics learning of English language learners. In addition to advancing theoretical understandings, the research will also contribute practical resources and guidance for mathematics teachers who teach English language learners. The Faculty Early Career Development (CAREER) program is a National Science Foundation (NSF)-wide activity that offers awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organizations.

The project is focused on the design of specialized hypothetical learning trajectories that incorporate considerations for linguistically diverse students. One goal for the specialized trajectories is to foster productive and powerful mathematics discussions about linear and exponential rates in linguistically diverse classrooms. The specialized learning trajectories will include both mathematical and language development learning goals. While this project focuses on concepts related to reasoning with linear and exponential functions, the resulting framework should inform the design of specialized hypothetical learning trajectories in other topic areas. Additionally, the project will add to the field's understanding of how linguistically diverse students develop mathematical understandings of a key conceptual domain. The project uses a design-based research framework gathering classroom-based data, assessment data, and interviews with teachers and students to design and refine the learning trajectories. Consistent with a design-based approach, the project results will include development of theory about linguistically diverse students' mathematics learning and development of guidance and resources for secondary mathematics teachers. This research involves sustained collaboration with secondary mathematics teachers and the impacts will include developing capacity of teachers locally, and propagating the results of this work in professional development activities.


Project Videos

2019 STEM for All Video Showcase

Title: Fostering Math Discussions among English Learners

Presenter(s): William Zahner


Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Schoenfeld)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503454
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

Pages

Subscribe to Grounded Theory