Reasoning Skills

Developing and Testing the Internship-inator, a Virtual Internship in STEM Authorware System

The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. 

Award Number: 
1418288
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Ensuring that students have the opportunities to experience STEM as it is conducted by scientists, mathematicians and engineers is a complex task within the current school context. This project will expand access for middle and high school students to virtual internships, by enabling STEM content developers to design and customize virtual internships. The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. The researchers in this project will work with a core development network to develop and refine the authorware, constructing up to a hundred new virtual internships and a user group of more than 70 STEM content developers. The researchers will iteratively analyze the performance of the authorware, focusing on optimizing the utility and the feasibility of the system to support virtual internship development. They will also examine the ways in which the virtual internships are implemented in the classroom to determine the quality of the STEM internship design and influence on student learning.

The Intership-inator builds on over ten years of NSF support for the development of Syntern, a platform for deploying virtual internships that has been used in middle schools, high schools, informal science programs, and undergraduate education. In the current project, the researchers will recruit two waves of STEM content developers to expand their current core development network. A design research perspective will be used to examine the ways in which the developers interact with the components of the authorware and to document the influence of the virtual internships on student learning. The researchers will use a quantitative ethnographic approach to integrate qualitative data from surveys and interviews with the developers with their quantitative interactions with the authorware and with student use and products from pilot and field tests of the virtual internships. Data-mining and learning analytics will be used in combination with hierarchical linear modeling, regression techniques and propensity score matching to structure the quasi-experimental research design. The authorware and the multiple virtual internships will provide researchers, developers, and teachers a rich learning environment in which to explore and support students' learning of important college and career readiness content and disciplinary practices. The findings of the use of the authorware will inform STEM education about the important design characteristics for authorware that supports the work of STEM content and curriculum developers.

DIMEs: Immersing Teachers and Students in Virtual Engineering Internships

This project will provide curricular and pedagogical support by developing and evaluating teacher-ready curricular Digital Internship Modules for Engineering (DIMEs). DIMES will be designed to support middle school science teachers in providing students with experiences that require students to use engineering design practices and science understanding to solve a real-world problem, thereby promoting a robust understanding of science and engineering, and motivating students to increased interest in science and engineering.

Award Number: 
1417939
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

The Next Generation Science Standards (NGSS) outline the science competencies students should demonstrate through their K-12 years and represent a commitment to integrate engineering design into the structure of science education. However, achieving this new ideal of teaching and learning will require new curricular and pedagogical supports for teachers as well as new and time-efficient assessment methods. This project will provide such curricular and pedagogical support by developing and evaluating teacher-ready curricular Digital Internship Modules for Engineering (DIMEs). DIMES will be designed to support middle school science teachers in providing students with experiences that require students to use engineering design practices and science understanding to solve a real-world problem, thereby promoting a robust understanding of science and engineering, and motivating students to increased interest in science and engineering. The modules will also assess students' ability to apply their science knowledge in solving the engineering problem, thereby providing teachers with actionable data about the depth of their students' science and engineering understanding. The DIMEs will be environments where students work as interns at a simulated engineering firm. 

The Digital Internship Modules for Engineering will provide immersive experiences that simultaneously serve as learning and assessment opportunities. DIMEs will assess not only whether students understand NGSS science and engineering concepts, but also whether they can use them in the context of real-world problem solving. Teachers will orchestrate DIMEs using a custom-designed teacher interface that will show student work, auto-generated assessments, and reports on each student's learning progress. This project will build on prior work on NSF-funded computer-based STEM learning environments called epistemic games. Epistemic games are computer role-playing games that have been successfully used in both undergraduate engineering courses and informal settings for K-12 populations to teach students to think like STEM professionals, thereby preparing them to solve 21st century problems. The project will create six ten-day activities, two each in Physical Science, Life Science and Earth Science units that are typically taught in middle school. An iterative research and design process is used to conduct pilot tests of the six DIMEs in local classrooms, field test a beta version of each DIME with 15 teachers and up to 1500 students in national classrooms, and then implement final versions of each DIME in research trials with 30 teachers and up to 3000 students in national classrooms. By bringing cutting-edge developments in learning science and undergraduate engineering education to middle school STEM education, the project aims to improve educational practice, and enhance assessment of learning outcomes in middle school science classroom settings.

Computer Science in Secondary Schools (CS3): Studying Context, Enactment, and Impact

This project will examine the relationships among the factors that influence the implementation of the Exploring Computer Science (ECS), a pre-Advanced Placement curriculum that prepares students for further study in computer science. This study elucidates how variation in curricular implementation influences student learning and determines not only what works, but also for whom and under what circumstances.

Lead Organization(s): 
Award Number: 
1418149
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Full Description: 

Computational thinking is an important set of 21st century knowledge and skills that has implications for the heavily technological world in which we live. Multiple industries indicate the under supply of those trained to be effective in the computer science workforce. In addition, there are increasing demands for broadening the participation in the computer science workforce by women and members of minority populations. SRI International will examine the relationships among the factors that influence the implementation of the Exploring Computer Science (ECS), a pre-Advanced Placement curriculum that prepares students for further study in computer science. SRI will work in partnership with the ECS curriculum developers, teachers, and the nonprofit Code.org who are involved in the scaling of ECS. This study elucidates how variation in curricular implementation influences student learning and determines not only what works, but also for whom and under what circumstances.

SRI will conduct a pilot study in which they develop, pilot, and refine measures as they recruit school districts for the implementation study. The subsequent implementation study will be a 2 year examination of curriculum enactment, teacher practice, and evidence of student learning. Because no comparable curriculum currently exists, the study will examine the conditions needed to implement the ECS curriculum in ways that improve student computational thinking outcomes rather than determine whether the ECS curriculum is more effective than other CS-related curricula. The study will conduct two kinds of analyses: 1) an analysis of the influence of ECS on student learning gains, and 2) an analysis of the relationship between classroom-level implementation and student learning gains. Because of the clustered nature of the data (students nested within classrooms nested within schools), the project will use hierarchical linear modeling to examine the influence of the curriculum.

Integrating Quality Talk Professional Development to Enhance Professional Vision and Leadership for STEM Teachers in High-Need Schools

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions.

Award Number: 
1316347
Funding Period: 
Mon, 07/15/2013 to Fri, 06/30/2017
Full Description: 

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. It is hypothesized that the QT model will enhance pre- and in-service secondary teachers' development of professional vision and leadership skills necessary for 21st century STEM education. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms in five of Georgia's high-need school districts by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions. As a result of such interactions, students' scientific literacy will be enhanced, including their ability to participate in content-rich discourse (i.e., QT) through effective disciplinary critical-analytic thinking and epistemic cognition. The contributions of this project, beyond the tangible benefits for teacher and student participants, include the development, refinement, and dissemination of an effective QT intervention and professional developmental framework that the entire science education community can use to promote scientific literacy and understanding.

The project goals are being achieved through a series of three studies employing complementary methods and data sources, and a focus upon dissemination of the model in the final project year. The first two years of the project focus on developing and refining the curricular and intervention efficacy materials using design-based research methods. In Year 3, the project engages in a quasi-experimental study of the refined QT model, followed by further refinements before disseminating the materials both within Georgia and throughout the national science education community in Year 4. Quantitative measures of teacher and student discourse and knowledge, as well as video-coding and qualitative investigations of intervention efficacy, are being analyzed using multiple methods. In collaboration with, but independent from project staff and stakeholders, the participatory and responsive evaluation utilizes a variety of qualitative and quantitative methods to conduct formative and summative evaluation.

Over the course of four years, the project will involve the participation of approximately 32 teachers in Georgia whose students include substantive percentages from populations underrepresented in the STEM fields. In addition to advancing their own students' scientific literacy, these participating teachers receive professional development on how to train other teachers, outside of the project, in using QT to promote scientific literacy. Further, the project will conduct a QT Summit for educational stakeholders and non-participant teachers to disseminate the intervention and professional development model. Finally, the project team will disseminate the findings widely to applied and scholarly communities through a website with materials and PD information (http://www.qualitytalk.org), professional journals, conferences, and NSF's DRK-12 Resource Network. This project, with its focus on teacher leadership and the pedagogical content knowledge necessary to use discourse to promote student science literacy, significantly advances the nation's goals of producing critical consumers and producers of scientific knowledge.

Developing Critical Evaluation as a Scientific Habit of Mind: Instructional Scaffolds for Secondary Earth and Space Sciences

This exploratory project develops and tests graphical scaffolds which facilitate high school students' coordination of connecting evidence with alternative explanations of particular phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry.

Lead Organization(s): 
Award Number: 
1316057
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

This exploratory project develops and tests graphical scaffolds, called model-evidence link (MEL) activities, which facilitate high school students' coordination of connecting evidence with alternative explanations of particular Earth and space sciences phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry. The project's research questions are: (1) how does year-long instruction using MEL activities change high school students' critical evaluation abilities; (2) how does use of critical evaluation promote judgment reappraisals about Earth and space science topics with large plausibility gaps; and (3) to what extent does promotion of plausibility reappraisal lead to high school students' construction and reconstruction of scientifically accurate conceptions about fundamental concepts in Earth and space sciences? The project develops three MEL activities that focus on important topics in Earth and space sciences. The topics will be hydraulic fracturing, wetlands, and lunar origin. These MELs were selected because they align with major topical units in Earth and space science (i.e., geology, water resources, and astronomy, respectively).

The project develops effective instructional tools (the MEL activities to stimulate collaborative argumentation) designed to increase high school students' critical evaluation abilities that that are central for fully engaging in these scientific and engineering practices and constructing scientifically accurate understanding. Science topics require students to effectively evaluate connections with evidence and alternative explanations. The development of MEL activities that cover major Earth and space sciences topics will assist teachers in increasing their students' critical evaluation abilities. These tools are developed in geographically diverse settings, including one school district with a Hispanic majority, to gauge their effectiveness in helping all students. Furthermore, the design-based research methods employed in the proposed study are focused on developing tools that can be easily integrated into a variety of science curricula to supplement and reinforce scientific and engineering practices, rather than wholesale replacement. The ability to be critically evaluative is essential for developing a society that characteristically exhibits scientific habits of mind and is equipped to deal with future challenges in a way that is beneficial to our nation.

Promoting Students' Spatial Thinking in Upper Elementary Grades using Geographic Information Systems (GIS)

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316660
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The study incorporates the latest developments in the use of Geographic Information Systems (GIS) within the classroom. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation. Geography teachers in elementary schools are trained to use GIS software to create digital maps specific to the subject matter and projects on which their students work. Students then work in small collaborative groups and engage in open discussions designed to enhance the development and use of their spatial and multi-step causal reasoning.

GIS has been used in middle and high school settings. This project introduces GIS to upper elementary grades particularly to allow students an early opportunity to be involved in meaningful data and map-driven activities to promote their spatial skills. The proposal team predicts that the traditional gap between girls and boys in spatial skills will shrink with training thus will be strongly pronounced in the experimental relative to control groups. The project documents the effectiveness of instructional practices that are likely to enhance multistep reasoning, systems thinking, conceptual and spatial understanding, and motivation for learning while learning to work with maps to solve problems involving geography and ecological awareness. The project develops instructional methods that incorporate innovative tools for promoting problem solving to address real-life issues in this increasingly technology-driven era. The innovative tool is open-source and designed for professionals, but it can be modified to be child-friendly. Classroom activities are integrated with science and social studies curricula and content standards. Teachers are expected to find the curriculum attractive and easy to implement.

Fostering Pedagogical Argumentation: Pedagogical Reasoning with and About Student Science Ideas

This project will use an iterative approach to design activities and supports that foster pedagogical argumentation for use in undergraduate teacher education courses. This project will examine: 1) whether and how PSTs engage in pedagogical argumentation and 2) whether and how this engagement impacts how they listen and respond to student ideas.

Award Number: 
1316232
Funding Period: 
Tue, 10/01/2013 to Sun, 09/30/2018
Full Description: 

Effective and ambitious teaching in science requires that teachers listen and respond to student ideas. But research shows that doing so in the classroom can be logistically, socially, and intellectually challenging for both expert and novice teachers. Listening to student ideas requires teachers to anticipate and interpret multiple lines of thinking that may be expressed ambiguously and simultaneously. Responding to student thinking, both in-the-moment and in future instruction, presents further challenges because teachers must balance their choices with other instructional priorities. Unfortunately, little work has been done to date in supporting these challenging practices in those who are learning to teach, pre-service teachers (PSTs). In order to address this gap, researchers in this Exploratory project will introduce a new approach to teacher education: pedagogical argumentation. Pedagogical argumentation creates a supportive environment in which the PSTs learn and refine these practices of listening and responding by using student ideas as evidence to construct and defend potential pedagogical decisions.

Over three years researchers from the University of Wisconsin-Madison will use an iterative approach to design activities and supports that foster pedagogical argumentation for use in undergraduate teacher education courses. This project will examine: 1) whether and how PSTs engage in pedagogical argumentation and 2) whether and how this engagement impacts how they listen and respond to student ideas. Working with both elementary and secondary PSTs, researchers will probe and explore their changing listening and responding practices by: collecting records of pedagogical argumentation (both video and written) as it occurs in the science teaching methods courses; conducting interviews about PSTs understanding of student ideas; and documenting PSTs teaching experiences in their school placements.

The science teacher education community writ large is in need of systematic approaches to teacher education that better support PSTs in learning ambitious teaching practices such as listening and responding to student ideas. The proposed study addresses this need and, in doing so, will support both immediate PSTs in engaging in this work as well as the broader teacher education community as it struggles with these same challenges. Moreover, the novel practice of pedagogical argumentation advances the fields theoretical understanding of the problem space for supporting these challenges by combining insight from two extensive programs of research in teaching and learning: 1) teacher reasoning about student ideas, and 2) argumentation about science content. As such, the practice of pedagogical argumentation has the potential to transform how teacher educators approach pre-service education.

Common Online Data Analysis Platform (CODAP)

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?"

Lead Organization(s): 
Award Number: 
1435470
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project aims to engage students in meaningful scientific data collection, analysis, visualization, modeling, and interpretation. It targets grades 9-12 science instruction. The proposed research poses the question "How do learners conceive of and interact with empirical data, particularly when it has a hierarchical structure in which parameters and results are at one level and raw data at another?" As working with data becomes an integral part of students' learning across STEM curricula, understanding how students conceive of data grows ever more important. This is particularly timely as science becomes more and more data driven.

The team will develop and test a Common Online Data Analysis Platform (CODAP). STEM curriculum development has moved online, but development of tools for students to engage in data analysis has yet to follow suit. As a result, online curriculum development projects are often forced to develop their own data analysis tools, settle for desktop tools, or do without. In a collaboration with NSF-funded projects at the Concord Consortium, Educational Development Center, and University of Minnesota, the project team is developing an online, open source data analysis platform that can be used not only by these three projects, but subsequently by others.

The proposed research breaks new ground both in questions to be investigated and in methodology. The investigations build on prior research on students' understanding of data representation, measures of center and spread, and data modeling to look more closely at students' understanding of data structures especially as they appear in real scientific situations. Collaborative design based on three disparate STEM projects will yield a flexible data analysis environment that can be adopted by additional projects in subsequent years. Such a design process increases the likelihood that CODAP will be more than a stand-alone tool, and can be meaningfully integrated into online curricula. CODAP's overarching goal is to improve the preparation of students to fully participate in an increasingly data-driven society. It proposes to do so by improving a critical piece of infrastructure: namely, access to classroom-friendly data analysis tools by curriculum developers who wish to integrate student engagement with data into content learning.

This project is asociated with award number 1316728 with the same title.

Enhancing Teaching and Learning with Social Media: Supporting Teacher Professional Learning and Student Scientific Argumentation

This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards.

Award Number: 
1316799
Funding Period: 
Thu, 08/01/2013 to Mon, 07/31/2017
Full Description: 

This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards. Participants include a team of ninth and tenth grade Life Science teachers collaborating as co-researchers with project staff in a design study to develop one socially mediated science unit. It also produces strategies, tools and on-line materials to support teachers' development of the pedagogical, content, and technological knowledge needed to integrate emerging technologies into science instruction. This project focuses on the flexible social media sites such as Facebook, Twitter and Instagram that students frequently use in their everyday lives. Research questions explore the technology of social media and the pedagogy needed to support student engagement in scientific argumentation. The Year Three pilot analyses provide data on the professional learning model. The project provides a basis for scale-up with this instructional and professional learning model to other core science content, cross-cutting themes, and STEM practices.

Innovate to Mitigate: A Crowdsourced Carbon Challenge

This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316225
Funding Period: 
Sun, 09/01/2013 to Mon, 08/31/2015
Full Description: 

This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines. Areas in which active cutting edge research on greenhouse gas mitigation is currently taking place include, among others, biology (photosynthesis, or biomimicry of photosynthesis to sequester carbon) and chemistry (silicon chemistry for photovoltaics, carbon chemistry for decarbonization of fossil fuels). Collaborating in teams of 2-5, participants engage with the basic science in these areas, and become skilled at applying scientific ideas, principles, and evidence to solve a design problem, while taking into account possible unanticipated effects. They refine their solutions based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

An interactive project website describes specifications for the challenge and provides rubrics to support rigor. It includes a library of relevant scientific resources, and, for inspiration, links to popular articles describing current cutting-edge scientific breakthroughs in mitigation. Graduate students recruited for their current work on mitigation projects provide online mentoring. Social networking tools are used to support teams and mentors in collaborative scientific problem-solving. If teams need help while working on their challenges, they are able to ask questions of a panel of expert scientists and engineers who are available online. At the end of the challenge, teams present and critique multimedia reports in a virtual conference, and the project provides awards for excellence.

The use of open innovation challenges for education provides a vision of a transformative setting for deep learning and creative innovation that at the same time addresses a problem of critical importance to society. Researchers study how this learning environment improves learning and engagement among participants. This approach transcends the informal/formal boundaries that currently exist, both in scientific and educational institutions, and findings are relevant to many areas of research and design in both formal and informal settings. Emerging evidence suggests that open innovation challenges are often successfully solved by participants who do not exhibit the kinds of knowledge, skill or disciplinary background one might expect. In addition, the greater the diversity of solvers is, the greater the innovativeness of challenge solutions tends to be. Therefore, it is expected that the free choice learning environment, the nature of the challenge, the incentives, and the support for collaboration will inspire the success of promising young participants from underserved student populations, as well as resulting in innovative solutions to the challenge given the diversity of teams.

Pages

Subscribe to Reasoning Skills