Broadening Participation

Critical Issues in Mathematics Education 2018

This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years.

Award Number: 
1827412
Funding Period: 
Thu, 03/01/2018 to Thu, 02/28/2019
Full Description: 

This conference will continue the workshop series, Critical Issues in Mathematics Education (CIME) on teaching and learning mathematics, initiated by the Mathematical Sciences Research Institute (MSRI) in 2004. The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. Sessions will share relevant programmatic efforts and innovative research that have been shown to maintain or increase students' engagement and interests in mathematics across K-12, undergraduate and graduate education. The sessions will focus particularly on reproducible efforts that affirm those students' identities and their diverse intellectual resources and lived experience.

The CIME workshops impact three distinct communities: research mathematicians, mathematics educators (K-16), and education researchers. Participants learn about research and development efforts that can enhance their own work and the contributions they can make to solving issues in mathematics education. Participants also connect with others concerned about those issues. This workshop will also focus on developing action plans that participants can implement once they return to their institutions. There is also a focus on recruitment of leaders of mathematics departments, teachers, and other leaders in mathematics education across K-12, undergraduate education and graduate education in order to examine systemic changes that can be made to increase access, engagement, and interest in mathematics.

Highly Adaptive Science Simulations for Accessible STEM Education

This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities.

Lead Organization(s): 
Award Number: 
1814220
Funding Period: 
Sun, 04/15/2018 to Wed, 03/31/2021
Full Description: 

This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities. The PhET Interactive Simulations project at the University of Colorado Boulder and collaborators at Georgia Tech, with expertise in accessible technology and design, will form the project team. The project team will conduct design-based implementation research, where adaptive accessibility features for interactive science simulations are developed through co-design with students with disabilities and their teachers. Students will include those with dyslexia, visual impairments or blindness, and students with intellectual and developmental disabilities, ranging from 5th grade through high school, and recent high school graduates. The adaptive accessibility features will be implemented within a set of PhET interactive science simulations, and allow students with disabilities to access the science simulations with alternative input devices (such as keyboards, switches, and sip-and-puff devices), alter the visual display of the simulations (changing color contrast, zoom and enlarge, and simplify), hear different auditory representations of the visual display (descriptions, sonification, and text-to-speech), and control the rate of simulated events. All features will be capable of being turned on or off and modified on-the-fly by teachers or students through a global control panel that includes curated feature sets, resulting in highly flexible, highly accessible, interactive learning resources.

PhET simulations are widely used in US classrooms, evidence-based, aligned with standards, and highly engaging and effective learning resources. With the proposed highly adaptive features and supporting resources, teachers will be able to quickly adapt the PhET simulations to meet the needs of many students with disabilities, simplifying the task of creating differentiated learning opportunities for students and supporting students with disabilities to engage in collaborative learning - a foundational component of a high-quality STEM education - alongside their non-disabled peers. To research, design, and develop the adaptive features and investigate their use by students, project team members will co-teach in classrooms with students with disabilities and conduct co-design activities with students, where students engage in design thinking to help design and refine the adaptive features to meet identified accessibility needs (their own and those of their peers). In addition, interviews with individual students with and without disabilities will also be conducted, to test early prototypes of individual features, to later refine the layering of the many different features, and to ensure the presence of adaptive features does not negatively impact traditional use of the simulations. The proposed work also includes surveys of teachers and students and analysis of teacher use, to refine global control features, develop curated feature sets, and develop supporting teacher resources. The project will address key questions at the heart of educational design for students with diverse needs, including how to make adaptive features that support student achievement of specific learning goals. The project will use design-based implementation research, with significant co-designing with students with disabilities (including visual impairments, cognitive disabilities, or dyslexia), interviews, case studies, and classroom implementation to design and evaluate the accessibility features. This will inform new models and theories of learning with technology. The project will investigate: 1) How students engage with, use, and learn from adaptive accessibility features, 2) how adaptive accessibility features can be designed to layer harmoniously together in a learning resource, and 3) how to effectively support access to rich, dynamic feature controls and curated feature sets for intuitive classroom use by students and teachers. The project will produce 8 PhET simulations with adaptive accessibility features and supporting teacher resources. The foundational research knowledge will result in effective design and implementation of adaptive accessibility features through the analysis of student engagement, usability, and learning from accessible simulations. Additionally, the project will provide technical infrastructure, exemplars, and software for use by other STEM education technology developers. The project team will work together to create a deep understanding of how to design adaptive science simulations with practical, usable, effective accessibility, so that learners with diverse needs can advance their science content knowledge and participate in science practices alongside their peers. The work has great potential to transform STEM learning for students with disabilities and to make simulations more effective for all learners. Results will provide insight into the effectiveness of accessible simulation-based activities and their corresponding teacher materials in engaging students in science practices and learning in the classroom.

Strengthening Data Literacy across the Curriculum (SDLC)

This project is developing and studying high school curriculum modules that integrate social justice topics with statistical data investigations to promote skills and interest in data science among underrepresented groups in STEM.

Award Number: 
1813956
Funding Period: 
Sun, 07/01/2018 to Wed, 06/30/2021
Full Description: 

The Strengthening Data Literacy across the Curriculum (SDLC) project is an exploratory/early stage design and development effort that aims to promote understanding of core statistical concepts and interest in quantitative data analysis among high school students from underrepresented groups in STEM. Led by a collaboration of researchers and developers at Education Development Center (EDC), statistics educators at California Polytechnic State University (Cal Poly), and technology developers at The Concord Consortium, the project is creating and studying a set of curriculum modules targeted to high school students who are taking mathematics or statistics classes that are not at advanced-placement (AP) levels. Iteratively developed and tested in collaboration with high school statistics and social studies teachers, the modules consist of applied data investigations structured around a four-step data investigation cycle that engage students in explorations of authentic social science issues using large-scale data sets from the U.S. Census Bureau. The project hypothesizes that students who engage in guided investigations using data visualization tools to explore and visualize statistical concepts may develop deeper understandings of these concepts as well as the data investigation process. Similarly, high school students – particularly those from historically marginalized groups who are underrepresented in STEM fields – may develop greater interest in statistics when they can use data to examine patterns of social and economic inequality and questions related to social justice.

One module, Investigating Income Inequality in the U.S., focuses on describing, comparing, and making sense of quantitative variables. Students deepen their understanding of this content by investigating questions such as: How have incomes for higher- and lower-income individuals in the U.S. changed over time? How much income inequality exists between males and females in the U.S.? Does education explain the wage gap between males and females? Another module, Investigating Immigration to the U.S., focuses on describing, comparing, and making sense of categorical variables. Students investigate questions such as: Are there more immigrants in the U.S. today than in previous years? Where have immigrants to the U.S. come from, now and in the past? Are immigrants as likely as the U.S. born to be participating in the labor force, after adjusting for education? Students conduct these analyses using the Common Online Data Analysis Platform (CODAP), an open-source set of tools that supports data visualization and conceptual understanding of statistical ideas over calculations. Lessons encourage collaborative inquiry and provide students with experiences in multivariable analysis—an important domain that is underemphasized in current high school mathematics and statistics curricula but critical for analyzing data in a big-data world.

The project is using a mixed methods approach to study three primary research questions: 1) What is the feasibility of implementing SDLC modules, and what supports may teachers and students need to use the modules? 2) In what ways may different features and components of the SDLC modules help to promote positive student learning and interest outcomes? 3) To what extent do students show greater interest in statistics and data analysis, as well as improved understandings of target statistical concepts, after module use? To investigate these questions, the project has worked with 12 mathematics and six social studies teachers in diverse public high schools in Massachusetts and California to conduct iterative research with over 600 students. Through this work, the project aims to build knowledge of curriculum-based approaches that prepare and attract more diverse populations to data science fields.

Investigating Impact of Different Types of Professional Development on What Aspects Mathematics Teachers Take Up and Use in Their Classroom

This project will study the design and development of PD that supports teacher development and student learning, and provide accumulation of evidence to inform teacher educators, administrators, teachers, and policymakers of factors associated with successful PD experiences and variation across teachers and types of PDs.

Lead Organization(s): 
Award Number: 
1813439
Funding Period: 
Sun, 07/01/2018 to Wed, 06/30/2021
Full Description: 

Professional development is a critical way in which teachers who are currently in classrooms learn about changes in mathematics teaching and learning and improve their practice. Little is known about what types of professional development (PD) support teachers' improved practice and student learning. However, federal, state, and local governments spend resources on helping teachers improve their teaching practice and students' learning. PD programs vary in their intent and can fall on a continuum from highly adaptive, with great latitude in the implementation, to highly specified, with little ability to adapt the program during implementation. The project will study the design and development of PD that supports teacher development and student learning, and provide accumulation of evidence to inform teacher educators, administrators, teachers, and policymakers of factors associated with successful PD experiences and variation across teachers and types of PDs. The impact study will expand on the evidence of promise from four 2015 National Science Foundation (NSF)-funded projects - two adaptive, two specified - to provide evidence of the impact of the projects on teachers' instructional practice over time. Although the four projects are different in terms of structure and design elements, they all share the goal to support challenging mathematics content, practice standards, and differentiation techniques to support culturally and linguistically diverse, underrepresented populations. Understanding the nature of the professional development including structure and design elements, and unpacking what teachers take up and use in their instructional practice potentially has widespread use to support student learning in diverse contexts, especially those serving disadvantaged and underrepresented student populations.

This study will examine teachers' uptake of mathematics content, pedagogy and materials from different types of professional development in order to understand and unpack the factors that are associated with what teachers take up and use two-three years beyond their original PD experience: Two specified 1) An Efficacy Study of the Learning and Teaching Geometry PD Materials: Examining Impact and Context-Based Adaptations (Jennifer Jacobs, Karen Koellner & Nanette Seago), 2) Visual Access to Mathematics: Professional Development for Teachers of English Learners (Mark Driscoll, Johanna Nikula, & Pamela Buffington), two adaptive: 3) Refining a Model with Tools to Develop Math PD Leaders: An Implementation Study (Hilda Borko & Janet Carlson), 4), TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Suzanne Donovan, Phil Tucher, & Catherine Lewis). The project will utilize a multi-case method which centers on a common focus of what content, pedagogy and materials teachers take up from PD experiences. Using a specified sampling procedure, the project will select 8 teachers from each of the four PD projects to serve as case study teachers. Subsequently, the project will conduct a cross case analysis focusing on variation among and between teachers and different types of PD. The research questions that guide the project's impact study are: RQ1: What is the nature of what teachers take up and use after participating in professional development workshops? RQ2: What factors influence what teachers take up and use and in what ways? RQ3: How does a professional development's position on the specified-adaptive continuum affect what teachers take up and use?

Project MAPLE: Makerspaces Promoting Learning and Engagement

The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies.

Award Number: 
1721236
Funding Period: 
Fri, 09/01/2017 to Sat, 08/31/2019
Full Description: 

The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The makerspace movement has gained recognition and momentum, which has resulted in many schools integrating makerspace technologies and related curricular practices into the classroom. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies. The project plans to translate and apply research on the use of metacognitive strategies in supporting struggling learners to develop approaches that teachers can implement to increase opportunities for students who are the most difficult to reach academically. Project strategies, curricula, and other resources will be disseminated through existing outreach websites, research briefs, peer-reviewed publications for researchers and practitioners, and a webinar for those interested in middle-school makerspaces for diverse learners.

The research will address the paucity of studies to inform practitioners about what pedagogical supports help struggling learners engage in these makerspace experiences. The project will focus on two populations of struggling learners in middle schools, students with learning disabilities, and students at risk for academic failure. The rationale for focusing on metacognition within makerspace activities comes from the literature on students with learning disabilities and other struggling learners that suggests that they have difficulty with metacognitive thinking. Multiple instruments will be used to measure metacognitive processes found to be pertinent within the research process. The project will tentatively focus on persistence (attitudes about making), iteration (productive struggle) and intentionality (plan with incremental steps). The work will result in an evidence base around new instructional practices for middle school students who are struggling learners so that they can experience more success during maker learning experiences.

Critical Issues in Mathematics Education 2017

This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. The workshop will deal with the problem of providing quality math education to all, and the barriers to doing so.

Award Number: 
1738702
Funding Period: 
Sat, 04/01/2017 to Sat, 03/31/2018
Full Description: 

This conference will continue the workshop series, Critical Issues in Mathematics Education (CIME) on teaching and learning mathematics, initiated by the Mathematical Sciences Research Institute (MSRI) in 2004. The topic for CIME 2017 will be "Observing for Access, Power, and Participation in Mathematics Classrooms as a Strategy to Improve Mathematics Teaching and Learning". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. The workshop will deal with the problem of providing quality math education to all, and the barriers to doing so. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This work is also funded by the IUSE program which focuses on innovation in undergraduate STEM education.

The CIME workshops impact three distinct communities: research mathematicians, mathematics educators (K-16), and education researchers. Participants learn about research and development efforts that can enhance their own work and the contributions they can make to solving issues in mathematics education. Participants also connect with others concerned about those issues. Workshops are designed to recruit key individuals to the improvement of mathematics education, frame critical issues, draw attention to issues of diverse participation and success, and provide images of productive engagement for participants to draw on beyond the conference.

Project Accelerate: University-High School AP Physics Partnerships

Project Accelerate blends the supportive structures of a student's home school, a rigorous online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The project could potentially lead to the success of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

Lead Organization(s): 
Award Number: 
1720914
Funding Period: 
Tue, 08/01/2017 to Fri, 07/31/2020
Full Description: 

Project Accelerate brings AP Physics 1 and, eventually, AP Physics 2 to students attending schools that do not offer AP Physics. The project will enable 249 students (mostly under-served, i.e., economically disadvantaged, ethnic minorities and racial minorities) to enroll in AP Physics - the students would otherwise not have access. These students either prepare for the AP Physics 1 exam by completing a highly interactive, conceptually rich, rigorous online course, complete with virtual lab experiments, or participate in an accredited AP course that also includes weekly hands-on labs. In this project, the model will be tested and perfected with more students and expanded to AP Physics 2. Further, model replication will be tested at an additional site, beyond the two pilot sites. In the first pilot year in Massachusetts at Boston University, results indicated that students fully engaged in Project Accelerate are (1) at least as well prepared as peer groups in traditional classrooms to succeed on the AP Physics 1 exam and (2) more inclined to engage in additional STEM programs and to pursue STEM fields and programs than they were prior to participating. In the second year of the pilot study, Project Accelerate doubled in size and expanded in partnership with West Virginia University. From lessons learned in the pilot years, key changes are being made, which are expected to increase success. Project Accelerate provides a potential solution to a significant national problem of too few under-served young people having access to high quality physics education, often resulting in these students being ill prepared to enter STEM careers and programs in college. Project Accelerate is a scalable model to empower these students to achieve STEM success, replicable at sites across the country (not only in physics, but potentially across fourteen AP subjects). The project could potentially lead to the success of tens of thousands of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

Project Accelerate blends the supportive structures of a student's home school, a private online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The goals of the project are: 1) have an additional 249 students, over three years, complete the College Board-accredited AP Physics 1 course or the AP Physics 1 Preparatory course; 2) add an additional replication site, with a total of three universities participating by the end of the project; 3) develop formal protocols so Project Accelerate can be replicated easily and with fidelity at sites across the nation; 4) develop formal protocols so the project can be self-sustaining at a reasonable cost (about $500 per student participant); 5) build an AP Physics 2 course, giving students who come through AP Physics 1 a second year of rigorous experience to help further prepare them for college and career success; 6) create additional rich interactive content, such as simulations and video-based experiments, to add to what is already in the AP Physics 1 prep course and to build the AP Physics 2 prep course - the key is to actively engage students with the material and include scaffolding to support the targeted population; 7) carry out qualitative and quantitative education research, identifying features of the program that work for the target population, as well as identifying areas for improvement. This project will support the growing body of research on the effectiveness of online and blended (combining online and in-person components) courses, and investigate the use of such courses with under-represented high school students.

Building Capacity to Retain Underrepresented Students in STEM Fields

This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions.

Lead Organization(s): 
Award Number: 
1741748
Funding Period: 
Mon, 05/01/2017 to Mon, 04/30/2018
Full Description: 

The NSF invests in a number of programs targeting underrepresented populations and institutions relative to its meeting its goals for broadening participation in STEM. This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions. The workshop will focus on assisting minority serving institutions with use of research designs, and review of best practices for intervention shown to be effective in helping underrepresented student cope with chronic stresses that interfere with their retention in STEM fields and careers. The target audience for the workshop will be the participating institutions and their undergraduate students, in partnership with local K-12 schools.

In collaboration with Quality Education for Minority and MERAssociates, Rutgers University Newark will provide a unique setting to convene more than 100 participants to attend the workshop. The participants will include deans and/or department chairs; STEM faculty; educational researchers, and institutional representatives such as Vice Presidents of Academic Affairs, Provosts, or other administrators. The participants will work in teams of 4-5 to address science research topics and activities related to curriculum development, teacher support, and student engagement. Outcomes from the workshops will provide insights about successful strategies, areas of future research, and awareness about the need for better intervention models that support underrepresented minority students in STEM.

Culturally Responsive Indigenous Science: Connecting Land, Language, and Culture

This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns.

Lead Organization(s): 
Award Number: 
1720931
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

The intersection between Indigenous and Western science continues to be of great importance to K-12 science education, particularly with regards to broadening participation in STEM. With over five hundred federally recognized Native American tribes in the United States, there is much to learn and understand. This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns. While Indigenous STEM teaching and learning as constructs have existed for many years, the rigorous research design and extensive integration of multimodal technologies as platforms for scientific inquiry, data management, knowledge dissemination and curation are innovative and timely. Few, if any, Design and Development projects in the current DRK-12 portfolio explore similar work. Therefore, the broader impacts of this project are poised to not only contribute to the DRK-12 portfolio but also advance knowledge in Indigenous STEM education and science education, more broadly.

Over a three year period, hundreds of Native American students (grades 4-9) in tribal schools located in Oregon, Washington, and Idaho will engage in the project. Each year, approximately 60-80 students (grades 7-9), with some returning students, will also participate in enrichment activities and in years 1-3, in the residential summer experience at Washington State University. A qualitative, quasi-experimental design-based study will be conducted to address three salient research questions: (a) What are the impacts of culturally responsive and land education-based ISTEM curriculum and technology on Native American student engagement, efficacy and achievement in school? (b) What types of professional development activities foster teacher efficacy and improve teacher learning and teaching of ISTEM in classrooms? and (c) How can ISTEM foster greater family and community engagement in schools and in Tribal Communities? Data will be collected through interviews, surveys, and or questionnaires from participating students, teachers, and Tribal members. Consistent with Indigenous methodologies, focus group interviews (talking circles) will also be facilitated after ISTEM community expositions and engagement activities to capture community impacts. Formative and summative evaluations will be conducted by the Learning and Performance Research Center (LPRC) at Washington State University, an independent entity of the University with extensive expertise in project evaluation. A broad range of dissemination activities will be employed to achieve maximum impacts, including the use of the Plateau People's Web Portal, a digital tool designed to help Native communities to manage, circulate, and curate their digital materials using their own cultural protocols, language and social systems. This regional collaboration includes partnerships with the Confederated Tribes of Warm Springs (Oregon), Confederated Tribes of the Colville Reservation (Washington), and the Coeur D'Alene Tribe (Idaho).


Project Videos

2020 STEM for All Video Showcase

Title: Culturally Responsive Indigenous Science

Presenter(s): Paula Price, Carladean Caldera, Landon Charlo, Kellie Fry, Zoe Higheagle Strong, Sandra Larios, James Lasarte-Whistocken, Lotus Norton-Wisla, & T Watson


Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hazari)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Award Number: 
1721021
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Pages

Subscribe to Broadening Participation