Persons with Disabilities

SimScientists Assessments: Physical Science Links

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

Lead Organization(s): 
Award Number: 
1221614
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Full Description: 

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The assessment strand consists of multilevel (increased thinking levels) assessment designs grounded on evidence-centered principles that target practices and key disciplinary conceptual schemes, such as matter, motion, energy, and waves identified in the National Research Council report "A Framework for K-12 Science Education: Practices, Crosscutting Knowledge, and Core Ideas". The assessment model vertically links simulations (interactive with feedback to students, coaching, and reflection); curriculum-embedded assessments for formative use; unit benchmark assessment for interim summative purposes; and a set of "signature tasks" (short-term simulations on recurring problem types). Members of the Advisory Board and an Assessment Review Panel actively participate in the development and implementation of this effort. Heller Research Associates is the external evaluator. The evaluation plan addresses both formative and summative aspects.

The project's theory of action is based on model-based learning and evidence-centered design reflective of the notion that the construct of science is multidimensional, requiring (a) understanding how the components of a science conceptual system interact to produce behaviors of the system; and (b) the use of inquiry practices to investigate the dynamic behaviors and underlying components' interactions of the system. A total of eight research and development questions guide the scope of work. The questions focus on: (a) validity (substantive and technical quality) of the individual simulation assessments; and (b) classroom implementation (feasibility, fidelity, utility). The methodology for test construction and revision follows the testing standards of major professional organizations (i.e., American Educational Research Association, American Psychological Association, and National Council of Measurement in Education) through three development phases. Phase I (Assessment Development) focuses on the alignment, quality, and prototype testing, including leverage and modification of prior work, and design of new assessment suites and signature tasks. Phase II (Pilot and Validation Studies) deals with the testing of all assessments, research instruments, and study methods. Phase III (Cross-Validation Studies) substantiates the multilevel integration assessment model, cross-validates the assessments piloted in Phase II, and establishes a reliable argument that the assessments measure the intended content and inquiry practices suitable for use in district and state-level assessment systems.

Expected outcomes are: (1) a research-informed and field-tested physical science simulations-based assessment model with high potential for extended use in middle school grades; and (2) a policy brief that provides recommendations for integrating assessments into districts and state large-scale, multi-level, balanced science assessments.

Implementing the Mathematical Practice Standards: Enhancing Teachers' Ability to Support the Common Core State Standards

This is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices.

Award Number: 
1119163
Funding Period: 
Mon, 08/01/2011 to Tue, 07/31/2012
Full Description: 

The Implementing Mathematical Practices Standards (IMPS) is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices. Researchers at the Education Development Center are developing videos and print materials that exemplify the mathematical practices and are working with teachers in grades 5-10 to help them use the materials effectively. The research questions of the project are focused on what features of the materials are most helpful to teachers and what professional development characteristics facilitate implementation of the mathematics practices in classroom instruction. The external evaluation of the project is being conducted by evaluators at TERC who are looking the process of developing materials and how the materials are used.

The materials will include professionally-produced videos exemplifying a particular mathematical practice being implemented in a classroom as well as printed dialogues that are designed to help teachers understand the practice and why it is critical for students to acquire that mathematical practice. The exemplars of mathematical practices are being developed based on pilot work and systematic advice from mathematicians, mathematics educators and mathematics teachers in grades 5-10. The design process is iterative and materials are refined based on feedback that is received. Facilitators are being prepared to conduct professional development and materials are being tested by more than 150 teachers in a variety of school districts.

Professional groups such as NCTM and NCSM have called for materials that exemplify the CCSS mathematical practices. They have argued that teachers need to understand how these standards can be achieved in classrooms. IMPS systematic effort to design materials that exemplify the standards and to test not only the materials but also the professional development associated with the materials is responding to the national need. The videos and dialogues will be available through broad dissemination.

Math Pathways and Pitfalls: Capturing What Works for Anytime Anyplace Professional Development

Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.

Lead Organization(s): 
Award Number: 
0918834
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Full Description: 

Researchers and developers at WestEd are developing, field-testing, and evaluating ten online professional development modules anchored in research-based teaching principles and achievement-boosting mathematics materials. The modules provide interactive learning opportunities featuring real classroom video demonstrations, simulations, and scaffolded implementation. The professional development module development builds on the Math Pathways and Pitfalls instructional modules for elementary and middle school students developed with NSF support. The professional development provided through the use of these modules is web-based (rather than face-to-face), is provided in chunks during the school year and immediately applied in the classroom (rather than summer professional development and school year application), and explicitly models ways to apply key teaching principles to regular mathematics lessons (rather than expecting teachers to extract and apply principles spontaneously).

The project studies the impact of the modules on teaching practice with an experimental design that involves 20 treatment teachers and 20 control teachers. Data are gathered from teacher questionnaires, classroom observations, and post-observation interviews.

Pages

Subscribe to Persons with Disabilities