Persons with Disabilities

Looking Back and Looking Forward: Increasing the Impact of Educational Research on Practice

The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.

Lead Organization(s): 
Award Number: 
1941494
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The focus of the proposed conference is to carefully examine past and current research with an eye toward improving its impact on practice. This conference is designed to create concrete steps that could shape the nature and impact of mathematics education research for years to come. A diverse group of 50 participants will be invited to participate. Participants include 10 experienced K-12 educators whose perspectives will be used to anchor the conference in problems of practice. Other participants represent senior through more junior scholars who have demonstrated a commitment to addressing the disconnect between research and practice, along with technology experts to advise participants on capabilities and innovative uses of modern technologies for instruction, assessment and data management.

The overarching goal for the conference is to help the field of mathematics education think deeply about the most productive ways to answer the following questions: [1] Why hasn't past research had a more direct impact on practice? What can be learned from this historical analysis for future research? [2] What is a possible vision for research that would have a more direct impact on practice? What questions should be asked? What methods should be used? What concrete steps can be taken to launch the new research programs? [3] What are the implications of adopting new kinds of research programs? If they gain traction, how will such changes affect the broader education community and infrastructure, including preservice teacher education, teacher professional development, and the training of future researchers? How should the roles of researchers and teachers change? What incentive structures might motivate these changes? How will new programs of research interact with existing programs?

Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.

Lead Organization(s): 
Award Number: 
1908889
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

U.S. proficiency in mathematics continues to be low and early math performance is a powerful predictor of long-term academic success and employability. However, relatively few early childhood degree programs have any curriculum requirements focused on key mathematics topics. Thus, teacher professional development programs offer a viable and promising method for supporting and improving teachers' instructional approaches to mathematics and thus, improving student math outcomes. The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction. The LT2 program modules uniquely include the mathematical learning goal, the developmental progression, and relevant instructional activities. All three aspects are critical for high-quality and coherent mathematics instruction in the early grades.

This project will address the following research questions: 1) What are the medium-range effects of LT2 on student achievement and the achievement gap? 2) What are the short- and long-term effects of LT2 on teacher instructional approach, beliefs, and quality? and 3) How cost effective is the LT2 intervention relative to the original Building Blocks intervention? To address the research questions, this project will conduct a multisite cluster randomized experimental design, with 90 schools randomly assigned within school districts to either experimental or control groups. Outcome measures for the approximately 250 kindergarten classrooms across these districts will include the Research-based Elementary Math Assessment, observations of instructional quality, a questionnaire focused on teacher beliefs and practices, in addition to school level administrative data. Data will be analyzed using multi-level regression models to determine the effect of the Learning Trajectories intervention on student learning.

CAREER: Bridging the Digital Accessibility Gap in STEM Using Multisensory Haptic Platforms

This project investigates how to use new touch technologies, like touchscreens, to create graphics and simulations that can be felt, heard, and seen. Using readily available, low-cost systems, the principal investigator will investigate how to map visual information to touch and sound for students with visual impairments.

Lead Organization(s): 
Award Number: 
1845490
Funding Period: 
Thu, 08/01/2019 to Wed, 07/31/2024
Full Description: 

Consider learning visual subjects such as math, engineering, or science without being able to see. Suddenly, the graphs, charts, and diagrams that provide a quick way to gather information are no longer effective. This is a challenge that students with visual impairments face in classrooms today as educational materials are most often presented electronically. The current way that individuals with visual impairments "read" graphics is through touch, feeling raised dots and patterns on paper that represent images. Creating these touch-based graphics requires extensive time and resources, and the output provides a static, hard-copy image. Lack of access to graphics in STEM subjects is one of the most pressing challenges currently facing individuals with visual impairments. This is a concern given the low representation of students with these disabilities in STEM fields and professions.

This project investigates how to use new touch technologies, like touchscreens, to create graphics and simulations that can be felt, heard, and seen. Using readily available, low-cost systems, the principal investigator will investigate how to map visual information to touch and sound. This research builds on prior research focused on representing the building blocks of graphics (points, lines, and shapes) nonvisually. In this project, the investigator will determine how to represent more challenging graphics such as charts, plots, and diagrams, nonvisually. The project will then explore the role of touch feedback in interactive simulations, which have moving elements that change with user input, making nonvisual access challenging. Finally, the projects extends the research to students with other disabilities, toward understanding the benefits and changes necessary for touch technologies to have broad impact. The project involves group and single-subject designs with approximately 65 students with visual impairments and focuses on the following outcomes of interest: students' graph literacy, percent correct on task assessments, time of exploration, response time, number of revisits to particular areas of the graphic, and number of switches between layers. Working closely with individuals with disabilities and their teachers, this work seeks to bridge the current graphical accessibility gap in STEM and raise awareness of universal design in technology use and development.

Algebraic Learning and Cognition in Learning Disabled Students

The project is a longitudinal assessment of the prerequisite (e.g. fractions), cognitive (e.g. working memory), and non-cognitive (e.g. math anxiety) factors that dynamically influence 7-9th grade students' algebraic learning and cognition, with a focus on students with learning disabilities in mathematics.

Lead Organization(s): 
Award Number: 
1659133
Funding Period: 
Tue, 08/15/2017 to Sat, 07/31/2021
Full Description: 

High school algebra is the gateway to a career in science, technology, engineering, and mathematics (STEM), and can influence employability and wages in many non-STEM occupations. Students who struggle with or fail high school algebra have compromised occupational prospects, and nations that do not produce mathematically competent citizens may compromise their economic growth. Much is known about the factors that contribute to students' difficulties with arithmetic learning and interventions are being developed to address these difficulties. Little is known, however, about why some students struggle with algebra. Accordingly, the project will follow at risk students (including for example, those with dyslexia) from 7th grade through high school algebra and assess their prerequisite knowledge (e.g. fractions skills), cognitive systems (e.g., memory), attitudes and reactions to mathematics (e.g. math anxiety) and their attentiveness in math classrooms. The comprehensive evaluation of these students will allow us to identify the factors that influence difficulties in learning different aspects of algebra and risk of failing algebra more generally. The results will provide unique scientific insights into the cognitive and motivational influences on students' understanding and learning of algebra and identify areas for intervention with at-risk students. The results will also be used to develop a screening measure for the early identification of at-risk students and to identify specific areas for targeted intervention. The measure will be made freely available to interested school districts throughout the United States.

The project is a 7th to 9th grade longitudinal assessment of the prerequisite (e.g. fractions), cognitive (e.g. working memory), and non-cognitive (e.g. math anxiety) factors that dynamically influence students' algebraic learning and cognition, with a focus on students with learning disabilities in mathematics. The study will provide the most comprehensive assessment of the development of algebra competence ever conducted and is organized by an integrative model of cognitive and non-cognitive influences on students' engagement in math classrooms and on the learning of procedural and spatial-related aspects of algebra. The focus on students at risk for failing high school algebra is informed by research on the number and arithmetic deficits of these students, providing continuity with previous work, and a strong a priori framework for assessing their most likely difficulties in learning algebra; specifically, we developed novel measures that assess different aspects of procedural algebra (e.g. memory for the structure of algebra equations) and spatial-related algebra (e.g. recognizing how common functions map to coordinate space) that will allow for the study of different types of learning deficits and a determination of how more basic cognitive abilities, such as visuospatial working memory, may underlie these deficits. Prior cognitive studies of at-risk students have largely ignored the contributions of non-cognitive factors, such as math anxiety, on their learning or how their learning difficulties change attitudes about and reactions to mathematics (e.g. increasing math anxiety). The proposed research will address this important oversight and integrate these non-cognitive factors with assessments of teacher-rated student engagement in pre-algebra and algebra classrooms (and language arts classrooms as a contrast) and how engagement in the classroom influences the learning of procedural and spatial-related algebra. The research will also provide a thorough analysis of cognitive and non-cognitive influences on algebraic learning and cognition more generally, and thus inform general educational practices. In all, the proposed research will provide a comprehensive model for the study algebraic learning and cognition generally, and will provide a comprehensive assessment of associated deficits of learning disabled students and students at risk for failing high school algebra. The research will also make available revised or newly developed cognitive measures of procedural and spatial-related algebra skills that should facilitate future cognitive science and educational studies of algebra learning.

Accelerating Higher Order Thinking and STEM Content Learning Among Students with Learning Disabilities

The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge.

Award Number: 
1813556
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

The need for reduction in achievement gaps and the growing adoption of rigorous curriculum standards has raised expectations for all students, but especially for students with learning disabilities. Students are expected to learn science concepts and use their understanding to investigate the natural world through scientific inquiry. They must also develop higher-order reasoning skills, integrate knowledge and ideas using primary sources, use causal reasoning to understand the chain of events, delineate and evaluate claims, and assess the reasoning used in arguments. Lower participation and achievement in science courses makes students with learning disabilities less likely to pursue STEM degrees, STEM careers, and succeed in the labor market where higher order thinking skills and scientific literacy are increasingly important. It is important to develop innovative tools that build on evidence based practices in combination with promising new technologies to improve the academic trajectory in STEM disciplines. The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge. The team will refine CORGI to offer enhanced functionality and supports for scientific argumentation, concept mastery, collaboration strategies and social skills for cooperative groups.  Technology enhancements will include multimedia input and output, writing supports (e.g., sentence starters), discussion threads, and affective reactions to content/lessons.

The research team will work with both teachers and students to develop integrated units, new higher order thinking routines, learning and collaboration strategies, and new technological functionality in CORGI_2. Researcher-practitioner-student design teams will use Design-Based Intervention Research (DBR) methods to iteratively: (a) identify the science content for inclusion, (b) develop integrated content units in life, physical, and earth science, (c) integrate additional higher order thinking and learning strategies to promote higher-order thinking and reasoning, and (c) design and implement additional UDL and mobile functionality for CORGI_2. Participants will include 30 middle school teachers and approximately 200 students with learning disabilities, including reading disabilities. Researchers will collect formative evaluation data from teachers and students to examine the usability, science content learning, higher order thinking skills, engagement, and motivation of general education and special education students in middle school classrooms. Professional development modules will be developed to support the DBR cycles as well as to support wider scale adoption and use by all students.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Science, Technology, Engineering and Mathematics Teaching in Rural Areas Using Cultural Knowledge Systems

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

Award Number: 
1812888
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. Research activities take place in Northwest Alaska. Senior personnel will travel to rural communities to collaborate with and support participants. The visits demonstrate University of Alaska Fairbanks's commitment to support pathways toward STEM careers, community engagement in research, science teacher recruitment and preparation, and STEM career awareness for Indigenous and rural pre-college students. Pre-service teachers who access to the resources and findings from this project will be better prepared to teach STEM to Native students and other minorities and may be more willing to continue careers as science educators teaching in settings with Indigenous students. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students. The project's participants and the pre-college students they teach will be part of the pipeline into science careers for underrepresented Native students in Arctic communities. The project will build on partnerships outside of Alaska serving other Indigenous populations and will expand outreach associated with NSF's polar science investments.

CCPM will build on cultural knowledge systems and NSF polar research investments to address science themes relevant to Inupiat people, who have inhabited the region for thousands of years. An Inupiaq scholar will conduct project research and guide collaboration between Indigenous participants and science researchers using the Inupiaq research methodology known as Katimarugut (meaning "we are meeting"). The project research and development will engage 450 students in grades 6-8 and serves 450 students (92% Indigenous) and 11 teachers in the remote Arctic. There are two broad research hypotheses. The first is that the project will build knowledge concerning STEM research practices by accessing STEM understandings and methodologies embedded in Indigenous knowledge systems; engaging Indigenous communities in project development of curricular resources; and bringing Arctic science research aligned with Indigenous priorities into underserved classrooms. The second is that classroom implementation of resources developed using the CCPM will improve student attitudes toward and engagement with STEM and increase their understandings of place-based science concepts. Findings from development and testing will form the basis for further development, broader implementation and deeper research to inform policy and practice on STEM education for underrepresented minorities and on rural education.

Methods for Assessing Replication

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies.

Lead Organization(s): 
Award Number: 
1841075
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Replication of prior findings and results is a fundamental feature of science and is part of the logic supporting the claim that science is self-correcting. However, there is little prior research on the methodology for studying replication. Research involving meta-analysis and systematic reviews that summarizes a collection of research studies is more common. However, the question of whether the findings from a set of experimental studies replicate one another has received less attention. There is no clearly defined and widely accepted definition of a successful replication study or statistical literature providing methodological guidelines on how to design single replication studies or a set of replication studies. The research proposed here builds this much needed methodology.

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies. It addresses three fundamental problems. The first is how to define replication: What, precisely, should it mean to say that the results in a collection of studies replicate one another? Second, given a definition of replication, what statistical analyses should be done to decide whether the collection of studies replicate one another and what are the properties of these analyses (e.g., sensitivity or statistical power)? Third, how should one or more replication studies be designed to provide conclusive answers to questions of replication? The project has the potential for impact on a range of empirical sciences by providing statistical tools to evaluate the replicability of experimental findings, assessing the conclusiveness of replication attempts, and developing software to help plan programs of replication studies that can provide conclusive evidence of replicability of scientific findings.

Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: Ellis)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Lead Organization(s): 
Award Number: 
1814033
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Pages

Subscribe to Persons with Disabilities