This is a Faculty Early Career Development project aimed at developing, implementing, and assessing a model that introduces novice elementary school teachers (grades 1-6) to community-based engineering design as a strategy for teaching and learning in urban schools. Reflective of the new Framework for K-12 Science Education (NRC, 2012), the model addresses key crosscutting concepts, disciplinary core ideas, and scientific and engineering practices.

# Projects

05/15/2013 |

02/15/2010 The goal of this project is to improve the quality of middle school science in a select number of schools and to gain insight into effective science professional development practice more generally. The project will focus on the following objectives: (1) increasing the quantity and quality of inquiry-based instruction; (2) facilitating the development and implementation of inquiry-based instruction; and (3) improving student achievement in middle school science classrooms. |

02/15/2017 This project explores how secondary mathematics teachers can plan and enact learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as "mathematically captivating learning experiences" or "MCLEs"). The study will examine how high school teachers can design lessons so that mathematical content itself is the source of student intrigue, pursuit, and passion. To do this, the content within mathematical lessons (both planned and enacted) is framed as mathematical stories and the felt tension between how information is revealed and withheld from students as the mathematical story unfolds is framed as its mathematical plot. |

02/01/2016 This project will design and develop specialized instructional materials and guidelines for teaching secondary algebra in linguistically diverse classrooms. These materials will incorporate current research on student learning in mathematics and research on the role of language in students' mathematical thinking and learning. The work will connect research on mathematics learning generally with research on the mathematics learning of ELLs, and will contribute practical resources and guidance for mathematics teachers who teach ELLs. |

07/01/2011 This project is investigating the learning that can take place when elementary school students are directly involved in the collection, sense-making, and analysis of real, personally-meaningful data sets. The hypotheses of this work are that by organizing elementary statistics instruction around the study of physical activities, students will have greater personal engagement in data analysis processes and that students will also develop more robust understandings of statistical ideas. |

06/15/2009 This project involves a longitudinal, ethnographic study of children's mathematical performances from preschool to first grade in both formal classroom settings and informal settings at school and home. The study seeks to identify opportunities for mathematical learning, to map varied performances of mathematical competence, to chart changes in mathematical performance over time, and to design and assess the impact of case studies for teacher education. |

08/15/2014 Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce. |

04/01/2010 This CAREER project explores interrelated research questions: (1) What understandings of variability can provide conceptual support for the scheme of ideas that underlie statistical inference--making claims about a population on the basis of samples? (2) What conceptions about variability do students bring to study of data analysis and statistical reasoning in middle grades? (3) How can instruction support students in coming to develop understanding and skill in reasoning about variability? |

07/01/2014 The goal of this project is to study and support the development of conceptual understanding of fractions by students with learning disabilities (LD). The researcher proposes that rather than focusing on whether LD students can or cannot develop conceptual understanding of fractions, research should attempt to uncover the understanding LD students have and examine how growth of conceptual knowledge occurs in these students. |

07/01/2017 This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. This award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction. |

08/01/2013 The proposed project initiates new research and an integrated education plan to address specific problems in middle school mathematics classrooms by investigating (1) how to effectively differentiate instruction for middle school students at different reasoning levels; and (2) how to foster middle school students' algebraic reasoning and rational number knowledge in mutually supportive ways. |

07/01/2016 This project will investigate teachers' knowledge of noticing students' science thinking. The project will examine teacher noticing in practice, use empirical evidence to model the teacher knowledge involved, and design teacher learning materials informed by the model. The outcomes of this project will be a model of teachers' knowledge of noticing Appalachian students' thinking in science and the design of web-based interactive instructional materials supporting teachers' knowledge construction around noticing Appalachian students' thinking in science. |

06/01/2012 The project will examine how teachers reason about variation subsequent to focused instruction and contribute knowledge to in-service middle and secondary mathematics teacher education by targeting characteristics of professional development that might support teachers' reasoning about variation in increasingly sophisticated ways. The project will produce a coherent collection of shareable instructional materials for use in introductory statistics education and teacher education in statistics. |

08/15/2008 This project conducts a systematic and empirical (both quantitative and qualitative) longitudinal study of the factors that influence students' decisions at critical junctures in the educational pipeline. The goals are too (a) broaden participation in science, technology, engineering, and math (STEM) fields and (b) improve the recruitment, retention, and success of minority undergraduate men in STEM and STEM-related fields across colleges and universities in the United States. |

07/15/2014 This program of research will examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program? |

07/01/2009 This project focuses on how children learn to reason about three aspects of complex causality; probabilistic causation; action at a distance; and distributed causality;and how to best support the development of this reasoning in classrooms. Through microgenetic study across the school year with small numbers of students in grades K-6, the study will characterize children's reasoning at different ages and how it shifts over time and with different learning supports. |

03/01/2013 The main goal of this mathematics education research project is to determine through experimentation specific teaching strategies that can be used to support middle school students in drawing connections between mathematical representations (fractions and ratios). The potential instructional strategies were identified from the Third International Mathematics and Science Study (TIMSS) video analyses study as the ones that best distinguished high performing countries from low performing countries. |

07/01/2012 Research has shown that engaging students, including students from underrepresented groups, in appropriately structured reasoning activities, including argumentation, may lead to enhanced learning. This project will provide information about how teachers learn to support collective argumentation and will allow for the development of professional development materials for prospective and practicing teachers that will enhance their support for productive collective argumentation. |

05/15/2014 Most students learn about negative numbers long after they have learned about positive numbers, and they have little time or opportunity to build on their prior understanding by contrasting the two concepts. The purpose of this CAREER project is to identify language factors and instructional sequences that contribute to improving elementary students' understanding of addition and subtraction problems involving negative integers. |

06/01/2016 This project will investigate the potential benefits of interactive, dynamic visualization technologies in supporting science learning for middle school students, including ELLs. This project will identify design principles for developing such technology, develop additional ways to support student learning, and provide guidelines for professional development that can assist teachers in better serving linguistically diverse students. The project has the potential to transform traditional science instruction for all students, and to broaden their participation in science. |

07/15/2011 This study is investigating the classroom factors and teacher characteristics that contribute to Latino English Language Learners' (ELL) gains in mathematics learning in the eighth grade. In addition to looking for key characteristics that influence mathematics learning, the researchers are measuring teachers' knowledge of mathematics for teaching, quality of instruction, and knowledge about English learners. |

09/01/2016 This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education. |

04/15/2011 This project investigates the outcomes of a teacher education model designed to foster prospective mathematics teachers' abilities to notice and capitalize on important mathematical moments in instruction. The project engages prospective teachers in research-like analysis of unedited teacher-perspective classroom video early in their teacher education coursework in order to help them learn to identify, assess the mathematical potential of, and respond to important student ideas and insights that arise during instruction. |

05/15/2013 This project will develop and study a professional development framework that is designed to help high school geometry teachers attend more carefully to student prior knowledge, interpret the learning implications of student prior knowledge, and adjust teaching practices accordingly. Participating teachers will participate in study groups that analyze animations of productive teaching practices; they will collaborate in planning, implementing, and analyzing geometry lessons; and they will critique videos of their own classroom instruction. |

07/15/2015 This project will develop an intervention to support the teaching and learning of proof in the context of geometry. This study takes as its premise that if we introduce proof, by first teaching students particular sub-goals of proof, such as how to draw a conclusion from a given statement and a definition, then students will be more successful with constructing proofs on their own. |