Tools for Teaching and Learning Engineering Practices: Pathways Towards Productive Identity Work in Engineering

Identifying with engineering is critical to help students pursue engineering careers. This project responds to this persistent large-scale problem. The I-Engineering framework and tools address both the learning problem (supporting students in learning engineering design) and the identity problem (supporting students in recognizing that they belong in engineering). 

Full Description

Identifying with engineering is critical to help students pursue engineering careers. This project responds to this persistent large-scale problem. The I-Engineering framework and tools address both the learning problem (supporting students in learning engineering design) and the identity problem (supporting students in recognizing that they belong in engineering). I-Engineering will support identity development as a part of learning two core practices in engineering: 1) defining problems and 2) designing solutions. In particular, the I-Engineering framework and tools will help middle grades teachers and students engage in the engineering design process using meaningful, authentic and often youth-driven contexts. The project will ground this work in two engineering design challenges: 1) safe and green commutes and 2) portable energy, both of which exemplify engineering for sustainable communities. The objectives are to: 1) To develop research-based understandings of how to support identity development among middle school students from underrepresented backgrounds in the context of learning engineering. 2) To develop and refine a framework and tools (I-Engineering) in support of student learning and identity development in engineering with a focus on sustainability. 3) To collaborate with grades 6 and 7 teachers to implement and refine I-Engineering for classroom use. 4) To study whether the I-Engineering framework/tools support identity development in engineering among middle school students from underrepresented backgrounds. 

The project draws upon design-based implementation research to develop and test the I-Engineering framework and tools among students and teachers in grades 6 and 7. Using social practice theory, how aspects of the learning environment shape identity development will be identified, yielding information on the impact of the instructional tools generated. The research questions are grounded in two areas: supporting identity development in engineering, understanding how students progress in their engineering development and patterns across implementation of the I-Engineering resources. Studies will shed light on mechanisms that support identity development in engineering, how that might be scaffolded, and how such scaffolds can transport across context. The mixed-method student- and classroom-level studies will allow for empirical claims regarding how and under what conditions youth from underrepresented backgrounds may progress in their identity development in engineering. The research plan includes student case studies drawing on task-based interviews, observations and student work and classroom studies using observations, student and teacher interviews, an engineering identity survey, student work and formative assessments of engineering practices. I-Engineering will reach over 500 students and their teachers in schools that serve predominantly underrepresented populations. The project team will disseminate the findings, framework and tools in support of teaching engineering practices, and promoting understanding of the importance of identity development in broadening participation.


Project Videos

2017 STEM for All Video Showcase

Title: I-Engineering

Presenter(s): Angela Calabrese Barton, Scott Calabrese Barton, Kathleen Schenkel, & Edna Tan


PROJECT KEYWORDS

Project Materials