This project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Researchers, in collaboration with school districts, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status.
School Structure and Science Success: Organization and Leadership Influences on Student Achievement (Collaborative Research: Butler)
The School Organization and Science Achievement (SOSA) Project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Previous school effectiveness studies demonstrate school leadership and social capital influencing student achievement; the SOSA project is unique with its focus on science achievement. Researchers at the University of Connecticut and the University of South Florida St. Petersburg, in collaboration with school districts in their respective states, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status. At the conclusion of the five-year project, the findings will take the form of recommendations about leadership practices and school organization that can be implemented in other school settings.
The project uses a mixed methods design by combining statistical modeling and qualitative data. Multiple regression analyses highlight those schools populated by fifth graders that have greater or lesser achievement gaps in science. Using social capital theory (i.e., school norms, communication channels, and trustworthiness) comparisons of positive and negative outlier schools will be made via interviews of building principals, classroom teachers and community representatives. The expectation is that schools providing more equitable science experiences to all students will exhibit stronger social capital compared to buildings with disparities in science test scores across demographic categories. These insights will be supplemented by multilevel structural equation modeling to determine the strength of association between various school climate measures (e.g., teacher-to-principal trust, correspondence between teacher and principal perceptions of leadership, and school/community ties) and science achievement as measured by statewide fifth grade science tests. In addition, growth analyses will be used to detect shifts over time and provide insights about the links between policy changes or leadership adjustments, inasmuch as science achievement gaps are affected.
By working with 150 schools in two states, this collaborative research project is designed to generate findings applicable in other school systems. Particularly in settings where science achievement gaps are large, and especially when such gaps vary between schools even when the student populations are similar, the findings from this study will have practical leadership implications. Expertise in this project includes science education, educational leadership, and statistical modeling. This complementary combination increases the depth of the project's efforts along with expanding its potential impacts. Key questions addressed by this project include: to what extent is leadership in science similar to or different from leadership in other subject areas? how do variations in leadership design (e.g., top-down versus distributed leadership) contribute to reductions in science achievement gaps? to what degree can effective leadership mitigate other factors that exacerbate the challenges of providing high quality science learning experiences for every child? Findings will be disseminated via the SOSA Project website, along with leadership development strategies. Deliverables include templates to replicate the study, case studies for professional development, and strategies for supporting the development of science teacher-leaders.
This project was previously funded under award # 1119359.