Informal

SciJourner Volume 1, Issue 4

Author(s): 
SciJourners
Contact Info: 
Publication Type: 
Other
Year: 
2009
In press?: 
In Press
Resource Format: 

The fourth print edition from summer 2009 of our science news publication, in pdf format. The articles in this edition, unlike the others, are written by high school teachers who participated in our summer PD.

A cognitive apprenticeship for science literacy based on journalism

Author(s): 
Polman, Joseph L.
Saul, E. Wendy
Newman, Alan
Farrar, Cathy
Singer, Nancy
Turley, Eric
Pearce, Laura
Hope, Jennifer
McCarty, Glenda
Graville, Cynthia
Contact Info: 
Publication Type: 
Proceedings
Year: 
2010
Month: 
June
In press?: 
In Press
Resource Format: 

Abstract: The Science Literacy through Science Journalism (SciJourn) project aims to reframe the discussion of science literacy for citizenship, and explore how science journalism practices can be used to inform a cognitive apprenticeship that increases the science literacy of participants. This symposium features four paper presentations that report on the progress of the SciJourn project.

Integrating Engineering and Literacy

This project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students.

Lead Organization(s): 
Award Number: 
1020243
Funding Period: 
Wed, 09/01/2010 to Wed, 05/31/2017
Full Description: 

The Integrating Engineering and Literacy (IEL) project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The project research and development team at Tufts University is working with pre-service teachers to design and test the curriculum modules for students and the teacher professional development model. Then the program is tested and refined in work with 100 in-service teachers and their students in a diverse set of Massachusetts schools. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students. The driving questions behind this proposed research are: (1) How do teachers' engineering (and STEM) content knowledge, pedagogical content knowledge, and perceptions or attitudes toward engineering influence their classroom teaching of engineering through literacy? (2) Do teachers create their own personal conceptions of the engineering design process, and what do these conceptions look like? (3) What engineering/reading thinking skills are students developing by participating in engineering activities integrated into their reading and writing work? The curriculum materials and teacher professional development model are being produced by a design research strategy that uses cycles of develop/test/refine work. The effects of the program are being evaluated by a variety of measures of student and teacher learning and practice. The project will contribute materials and research findings to the ultimate goal of understanding how to provide elementary school students with meaningful opportunities to learn engineering and develop valuable problem solving and thinking skills.

CLUSTER: Investigating a New Model Partnership for Teacher Preparation (Collaborative Research: Gupta)

This project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. The study is designed to examine and document the effect of this integrated program on the production of urban science teachers. This study will also research the impact of internships in science centers on improving classroom science teaching in urban high schools.

Lead Organization(s): 
Award Number: 
0554262
Funding Period: 
Sat, 04/01/2006 to Thu, 03/31/2011

Integrating Computing Across the Curriculum (ICAC): Incorporating Technology into STEM Education Using XO Laptops

This project builds and tests applications tied to the school curriculum that integrate the sciences with mathematics, computational thinking, reading and writing in elementary schools. The investigative core of the project is to determine how to best integrate computing across the curriculum in such a way as to support STEM learning and lead more urban children to STEM career paths.

Project Email: 
Award Number: 
1404467
Funding Period: 
Sat, 08/01/2009 to Sun, 07/31/2011
Project Evaluator: 
Leslie Cooksy - Univ. of Delaware
Full Description: 

Computer access has opened an exciting new dimension for STEM education; however, if computers in the classroom are to realize their full potential as a tool for advancing STEM education, methods must be developed to allow them to serve as a bridge across the STEM disciplines. The goal of this 60-month multi-method, multi-disciplinary ICAC project is to develop and test a program to increase the number of students in the STEM pipeline by providing teachers and students with curricular training and skills to enhance STEM education in elementary schools. ICAC will be implemented in an urban and predominantly African American school system, since these schools traditionally lag behind in filling the STEM pipeline. Specifically, ICAC will increase computer proficiency (e.g., general usage and programming), science, and mathematics skills of teachers and 4th and 5th grade students, and inform parents about the opportunities available in STEM-centered careers for their children.

The Specific Aims of ICAC are to:

SA1. Conduct a formative assessment with teachers to determine the optimal intervention to ensure productive school, principal, teacher, and student participation.

SA2. Implement a structured intervention aimed at (1) teachers, (2) students, and (3) families that will enhance the students’ understanding of STEM fundamentals by incorporating laptops into an inquiry-based educational process.

SA3. Assess the effects of ICAC on:

a. Student STEM  engagement and performance.

b. Teacher and student computing specific confidence and utilization.

c. Student interest in technology and STEM careers.

d. Parents’ attitudes toward STEM careers and use of computers.

To enable us to complete the specific aims noted above, we have conducted a variety of project activities in Years 1-3. These include:

  1. Classroom observations at the two Year 1 pilot schools
  2. Project scaling to 6 schools in Year 2 and 10 schools in Year 3
  3. Semi-structured school administrator interviews in schools
  4. Professional development sessions for teachers
  5. Drafting of curriculum modules to be used in summer teacher institutes and for dissemination
  6. In-class demonstration of curriculum modules
  7. Scratch festivals each May
  8. Summer teacher institutes
  9. Student summer camps
  10. Surveying of teachers in summer institutes
  11. Surveying of teachers and students at the beginning and end of the school year
  12. Showcase event at end of student workshops

The specific ICAC activities for Years 2-5 include:

  • Professional development sessions (twice monthly for teachers), to integrate the ‘best practices’ from the program.
  • Working groups led by a grade-specific lead teacher. The lead teacher for each grade in each school will identify areas where assistance is needed and will gather the grade-specific cohort of teachers at their school once every two weeks for a meeting to discuss the progress made in addition to challenges to or successes in curricula development.  
  • ICAC staff and prior trained teachers will visit each class monthly during the year to assist the teachers and to evaluate specific challenges and opportunities for the use of XOs in that classroom.  
  • In class sessions at least once per month (most likely more often given feedback from Teacher Summer Institutes) to demonstrate lesson plans and assist teachers as they implement lesson plans.
  • ICAC staff will also hold a joint meeting of administrators of all target schools each year to assess program progress and challenges. 
  • Teacher Summer Institutes – scaled-up to teachers from the new schools each summer to provide training in how to incorporate computing into their curriculum.
  • Administrator sessions during the Teacher Summer Institutes; designed to provide insight into how the laptops can facilitate the education and comprehension of their students in all areas of the curriculum, discuss flexible models for physical classroom organization to facilitate student learning, and discussions related to how to optimize the use of computing to enhance STEM curricula in their schools.  Student Summer Computing Camps – designed to teach students computing concepts, make computing fun, and enhance their interest in STEM careers.  
  • ICAC will sponsor a yearly showcase event in Years 2-5 that provides opportunities for parents to learn more about technology skills their children are learning (e.g., career options in STEM areas, overview of ICAC, and summary of student projects). At this event, a yearly citywide competition among students also will be held that is an expanded version of the weeklong showcase event during the student summer camps.
  • Surveying of students twice a year in intervention schools.
  • Surveying of teachers at Summer Institutes and then at the end of the academic year.
  • Coding and entry of survey data; coding of interview and observational data.
  • Data analysis to examine the specific aims (SA) noted above:
    • The impact of ICAC on teacher computing confidence and utilization (SA 3.b).
    • Assess the effects of (1) teacher XO training on student computing confidence and utilization (SA 3.b), (2) training on changes in interest in STEM careers (SA 3.c), and (3) XO training on student engagement (SA 3.a).
    • A quasi-experimental comparison of intervention and non-intervention schools to assess intervention effects on student achievement (SA 3.a).
    • Survey of parents attending the yearly ICAC showcase to assess effects on parental attitudes toward STEM careers and computing (SA 3.d).

The proposed research has the potential for broad impact by leveraging technology in BCS to influence over 8,000 students in the Birmingham area. By targeting 4th and 5th grade students, we expect to impact STEM engagement and preparedness of students before they move into a critical educational and career decision-making process. Further, by bolstering student computer and STEM knowledge, ICAC will impart highly marketable skills that prepare them for the 81% of new jobs that are projected to be in computing and engineering in coming years (as predicted by the US Bureau of Labor Statistics).3 Through its formative and summative assessment, ICAC will offer intellectual merit by providing teachers throughout the US with insights into how computers can be used to integrate the elementary STEM curriculum. ICAC will develop a model for using computers to enhance STEM education across the curriculum while instilling a culture among BCS schools where computing is viewed as a tool for learning.

(Previously listed under Award # 0918216)

Building an Understanding of Science

Understanding Science provides an accurate portrayal of the nature of science and tools for teaching associated concepts. This project has at its heart a public re-engagement with science that begins with teacher preparation. To this end, its immediate goals are (1) improve teacher understanding of the nature of the scientific enterprise and (2) provide resources and strategies that encourage and enable K-16 teachers to incorporate and reinforce the nature of science throughout their science teaching.

Award Number: 
0624436
Funding Period: 
Mon, 03/12/2007 to Wed, 05/11/2011
Project Evaluator: 
BSCS

Pages

Subscribe to Informal