Informal

Understanding the Role of Contextual Effects in STEM Pursuit and Persistence: A Synthesis Approach

This synthesis project will inform educators and policymakers about the cumulative evidence that exists on the impacts of a variety of contextual factors on a multitude of STEM outcomes (e.g., math and science achievement, self-efficacy, future goals). This project will provide new evidence regarding the significance of youth contexts on STEM outcomes that will assist policy makers and educators in evaluating productive educational environments.

Award Number: 
1417601
Funding Period: 
Mon, 09/01/2014 to Wed, 08/31/2016
Full Description: 

The percentage of U.S. high school graduates pursuing STEM majors has declined over the last three decades with the largest decline among the highest achieving students. American youth are ill-prepared relative to their international counterparts - U.S. 15 year olds rank 16 out of 26 developed countries in science literacy and 19 out of 26 developed counties in mathematical literacy. There is much research in the areas of how students learn STEM in formal settings, but there is little knowledge of the impact of youth contexts on STEM. Youth contexts are social groups in the lives of young people such as neighborhoods, communities, schools, classrooms or friends. Understanding the role of youth contexts is crucial to ensuring that all students have the opportunity to learn STEM content. This project will synthesize the research literature on youth context and assess whether and how a range of these contexts shape K-12 STEM outcomes and engagement - predictors critical for later educational and occupational attainment. The researchers will conduct two large-scale meta-analyses - one based on the quantitative research body and one based on the qualitative research body - in order to draw conclusions about which contextual factors relate to which STEM outcomes across the span of extant research. In doing so, this synthesis project will inform educators and policymakers about the cumulative evidence that exists on the impacts of a variety of contextual factors on a multitude of STEM outcomes (e.g., math and science achievement, self-efficacy, future goals). This project will provide new evidence regarding the significance of youth contexts on STEM outcomes that will assist policy makers and educators in evaluating productive educational environments.

Syntheses of the research in youth contexts and their impact in STEM will address the following four research questions: (1) How do contextual factors impact STEM learning?; (2) How do these factors vary by the specific type of context?; (3) How do these factors vary by gender and race within each context?; and, (4) Are these factors influenced by the methodological features of the research? The review will include electronic searches of educational, economics, sociology, psychology, and general science databases covering the years 1980-2014. Results will be narrowed by youth context area, and separate analysis will be conducted on gender and race/ethnicity differences in STEM outcomes. The data for the full review will be evaluated by a common set of guidelines to be published along with the findings, enabling the conclusions of the review to be transparent and allowing for detailed information to be easily accessible. The review will discuss each study that meets the inclusion requirements for a valid research design. With this methodology, this study will be the first to provide a clearinghouse of rigorous research related to contextual factors of STEM outcomes.

Taking Games to School: Exploratory Study to Support Game-based Teaching and Learning In High-School Science Classes

This project is building a set of software tools, including a tool for annotating screen recordings of activities in games, a teacher data dashboard for information about students' in-game learning, and tools to help teachers customize activities in games to better align with curricular standards. The project will find out whether these new tools can enhance teaching and/or learning. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1415284
Funding Period: 
Tue, 07/15/2014 to Sat, 06/30/2018
Full Description: 

Research shows that educational games can enhance students' science learning, but current work leaves teachers dependent on researchers and games companies to provide good games and game-based curricula. This project aims to study how teachers can be involved in making science learning games more effective, and how educational science games can better support good teaching. This project is building a set of software tools, including a tool for annotating screen recordings of activities in games, a teacher data dashboard for information about students' in-game learning, and tools to help teachers customize activities in games to better align with curricular standards. It will conduct studies with successful research-based educational games for learning science, and popularly available educational games from websites such as BrainPop, in a network of teachers who have experience using 'canned' games in their classrooms. The project will find out whether these new tools can enhance teaching and/or learning. It will also help develop a list of the types of customization options teachers need in order to be able to effectively use educational games in their classrooms. If successful, this research could point the way towards new tools that let teachers create activities that turn any game into an educational game, and to better use existing educational games in their classrooms. This could greatly speed up our ability to deliver high-quality learning experiences through educational games.

This project involves a participatory design process in which a small number of experienced teachers will feed into a principled, iterative refinement of prototypes of the tools (annotation, data dashboard, and level-builder) to be prototyped within the Brainplay suite. In the beta testing phase, a hierarchical linear model analysis will be conducted on both student and teacher outcomes in 25 classrooms. In addition to the quantitative analysis, qualitative studies involving classroom observations, focus groups, and teacher journaling will be conducted to examine impact on teaching practices and refine the functional specifications. Project dissemination will take place through the community around the previously-developed Leveling Up games (played around 10,000 times per week), and through existing professional networks such as Edmodo. The project will also work within the games community to help inform possible approaches to logging learning data and allowing teacher customization across all games.

Developing and Testing the Internship-inator, a Virtual Internship in STEM Authorware System

The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. 

Award Number: 
1418288
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Ensuring that students have the opportunities to experience STEM as it is conducted by scientists, mathematicians and engineers is a complex task within the current school context. This project will expand access for middle and high school students to virtual internships, by enabling STEM content developers to design and customize virtual internships. The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. The researchers in this project will work with a core development network to develop and refine the authorware, constructing up to a hundred new virtual internships and a user group of more than 70 STEM content developers. The researchers will iteratively analyze the performance of the authorware, focusing on optimizing the utility and the feasibility of the system to support virtual internship development. They will also examine the ways in which the virtual internships are implemented in the classroom to determine the quality of the STEM internship design and influence on student learning.

The Intership-inator builds on over ten years of NSF support for the development of Syntern, a platform for deploying virtual internships that has been used in middle schools, high schools, informal science programs, and undergraduate education. In the current project, the researchers will recruit two waves of STEM content developers to expand their current core development network. A design research perspective will be used to examine the ways in which the developers interact with the components of the authorware and to document the influence of the virtual internships on student learning. The researchers will use a quantitative ethnographic approach to integrate qualitative data from surveys and interviews with the developers with their quantitative interactions with the authorware and with student use and products from pilot and field tests of the virtual internships. Data-mining and learning analytics will be used in combination with hierarchical linear modeling, regression techniques and propensity score matching to structure the quasi-experimental research design. The authorware and the multiple virtual internships will provide researchers, developers, and teachers a rich learning environment in which to explore and support students' learning of important college and career readiness content and disciplinary practices. The findings of the use of the authorware will inform STEM education about the important design characteristics for authorware that supports the work of STEM content and curriculum developers.

DIMEs: Immersing Teachers and Students in Virtual Engineering Internships

This project will provide curricular and pedagogical support by developing and evaluating teacher-ready curricular Digital Internship Modules for Engineering (DIMEs). DIMES will be designed to support middle school science teachers in providing students with experiences that require students to use engineering design practices and science understanding to solve a real-world problem, thereby promoting a robust understanding of science and engineering, and motivating students to increased interest in science and engineering.

Award Number: 
1417939
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

The Next Generation Science Standards (NGSS) outline the science competencies students should demonstrate through their K-12 years and represent a commitment to integrate engineering design into the structure of science education. However, achieving this new ideal of teaching and learning will require new curricular and pedagogical supports for teachers as well as new and time-efficient assessment methods. This project will provide such curricular and pedagogical support by developing and evaluating teacher-ready curricular Digital Internship Modules for Engineering (DIMEs). DIMES will be designed to support middle school science teachers in providing students with experiences that require students to use engineering design practices and science understanding to solve a real-world problem, thereby promoting a robust understanding of science and engineering, and motivating students to increased interest in science and engineering. The modules will also assess students' ability to apply their science knowledge in solving the engineering problem, thereby providing teachers with actionable data about the depth of their students' science and engineering understanding. The DIMEs will be environments where students work as interns at a simulated engineering firm. 

The Digital Internship Modules for Engineering will provide immersive experiences that simultaneously serve as learning and assessment opportunities. DIMEs will assess not only whether students understand NGSS science and engineering concepts, but also whether they can use them in the context of real-world problem solving. Teachers will orchestrate DIMEs using a custom-designed teacher interface that will show student work, auto-generated assessments, and reports on each student's learning progress. This project will build on prior work on NSF-funded computer-based STEM learning environments called epistemic games. Epistemic games are computer role-playing games that have been successfully used in both undergraduate engineering courses and informal settings for K-12 populations to teach students to think like STEM professionals, thereby preparing them to solve 21st century problems. The project will create six ten-day activities, two each in Physical Science, Life Science and Earth Science units that are typically taught in middle school. An iterative research and design process is used to conduct pilot tests of the six DIMEs in local classrooms, field test a beta version of each DIME with 15 teachers and up to 1500 students in national classrooms, and then implement final versions of each DIME in research trials with 30 teachers and up to 3000 students in national classrooms. By bringing cutting-edge developments in learning science and undergraduate engineering education to middle school STEM education, the project aims to improve educational practice, and enhance assessment of learning outcomes in middle school science classroom settings.

Changing Culture in Robotics Classroom (Collaborative Research: Shoop)

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418199
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources. This project builds upon a ten year collaboration between Carnegie Mellon's Robotics Academy and the University of Pittsburgh's Learning Research and Development Center that studied how teachers implement robotics education in their classrooms and developed curricula that led to significant learning gains. This project will address the following three questions:

1.What kinds of resources are useful for motivating and preparing teachers to teach computational thinking and for students to learn computational thinking?

2.Where do teachers struggle most in teaching computational thinking principles and what kinds of supports are needed to address these weaknesses?

3.Can virtual environments be used to significantly increase access to computational thinking principles?

The project will augment traditional robotics classrooms and competitions with Robot Virtual World (RVW) that will scaffold student access to higher-order problems. These virtual robots look just like real-world robots and will be programmed using identical tools but have zero mechanical error. Because dealing with sensor, mechanical, and actuator error adds significant noise to the feedback students' receive when programming traditional robots (thus decreasing the learning of computational principles), the use of virtual robots will increase the learning of robot planning tasks which increases learning of computational thinking principles. The use of RVW will allow the development of new Model-Eliciting Activities using new virtual robotics challenges that reward creativity, abstraction, algorithms, and higher level programming concepts to solve them. New curriculum will be developed for the advanced concepts to be incorporated into existing curriculum materials. The curriculum and learning strategies will be implemented in the classroom following teacher professional development focusing on computational thinking principles. The opportunities for incorporating computationally thinking principles in the RVW challenges will be assessed using detailed task analyses. Additionally regression analyses of log-files will be done to determine where students have difficulties. Observations of classrooms, surveys of students and teachers, and think-alouds will be used to assess the effectiveness of the curricula in addition to pre-and post- tests to determine student learning outcomes.

QuEST: Quality Elementary Science Teaching

This project is examining an innovative model of situated Professional Development (PD) and the contribution of controlled teaching experiences to teacher learning and, as a result, to student learning. The project is carrying out intensive research about an existing special PD summer institute (QuEST) that has been in existence for more than five years through a state Improving Teacher Quality Grants program.

Lead Organization(s): 
Award Number: 
1316683
Funding Period: 
Thu, 08/15/2013 to Mon, 07/31/2017
Full Description: 

The University of Missouri-Columbia is examining an innovative model of situated Professional Development (PD) and the contribution of controlled teaching experiences to teacher learning and, as a result, to student learning. The project is carrying out intensive research about an existing special PD summer institute (QuEST) that has been in existence for more than five years through a state Improving Teacher Quality Grants program. The project will do the following: (1) undertake more in-depth and targeted research to better understand the efficacy of the PD model and impacts on student learning; (2) develop and field test resources from the project that can produce broader impacts; and (3) explore potential scale-up of the model for diverse audiences. The overarching goals of the project are: (a) Implement a high-quality situated PD model for K-6 teachers in science; (b) Conduct a comprehensive and rigorous program of research to study the impacts of this model on teacher and student learning; and (c) Disseminate project outcomes to a variety of stakeholders to produce broader impacts. A comparison of two groups of teachers will be done. Both groups will experience a content (physics) and pedagogy learning experience during one week in the summer. During a second week, one group will experience "controlled teaching" of elementary students, while the other group will not. Teacher and student gains will be measured using a quantitative and qualitative, mixed-methods design.

GeniVille: Exploring the Intersection of School and Social Media

This project examines the design principles by which computer-based science learning experiences for students designed for classroom use can be integrated into virtual worlds that leverage students' learning of science in an informal and collaborative online environment. GeniVille is the integration of Geniverse, a education based game that develops middle school students' understanding of genetics with Whyville, an educational virtual word in which students can engage in a wide variety of science activities and games.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1238625
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

This project examines the design principles by which computer-based science learning experiences for students designed for classroom use can be integrated into virtual worlds that leverage students' learning of science in an informal and collaborative online environment. GeniVille, developed and studied by the Concord Consortium, is the integration of Geniverse, a education based game that develops middle school students' understanding of genetics with Whyville, developed and studied by Numedeon, Inc., an educational virtual word in which students can engage in a wide variety of science activities and games. Genivers has been extensively researched in its implementation in the middle school science classroom. Research on Whyville has focused on how the learning environment supports the voluntary participation of students anywhere and anytime. This project seeks to develop an understanding of how these two interventions can be merged together and to explore mechanisms to create engagement and persistence through incentive structures that are interwoven with the game activities. The project examines the evidence that students in middle schools in Boston learn the genetics content that is the learning objective of GeniVille.

The project uses an iterative approach to the modification of Geniverse activites and the Whyville context so that the structured learning environment is accessible to students working collaboratively within the less structured context. The modification and expansion of the genetics activities of the project by which various inheritance patterns of imaginary dragons are studied continues over the course of the first year with pilot data collected from students who voluntarily engage in the game. In the second year of the project, teachers from middle schools in Boston who volunteer to be part of the project will be introduced to the integrated learning environment and will either use the virtual learning environment to teach genetics or will agree to engage their students in their regular instruction. Student outcomes in terms of engagement, persistence and understanding of genetics are measured within the virtual learning environment. Interviews with students are built into the GeniVille environment to gauge student interest. Observations of teachers engaging in GeniVille with their students are conducted as well as interviews with participating teachers.

This research and development project provides a resource that blends together students learning in a computer simulation with their working in a collaborative social networking virtual system. The integration of the software system is designed to engage students in learning about genetics in a simulation that has inherent interest to students with a learning environment that is also engaging to them. The project leverages the sorts of learning environments that make the best use of online opportunities for students, bringing rich disciplinary knowledge to educational games. Knowing more about how students collaboratively engage in learning about science in a social networking environment provides information about design principles that have a wide application in the development of new resources for the science classroom.

An Innovative Approach to Earth Science Teacher Preparation: Uniting Science, Informal Science Education, and Schools to Raise Student Achievement

The American Museum of Natural History in New York City, in partnership with New York University, and in collaboration with five high-needs schools, is developing, implementing, and researching a five-year pilot Master of Arts in Teaching (MAT) program in Earth Science. The program is delivered by the Museum's scientific and education teams and its evaluation covers aspects of the program from recruitment to first year of teaching.

Project Email: 
Award Number: 
1119444
Funding Period: 
Thu, 09/01/2011 to Thu, 08/31/2017
Project Evaluator: 
David Silvernail, Center for Education and Policy, University of Southern Maine
Full Description: 

The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”

SciJourner Volume 2, Issue 2

Author(s): 
SciJourners
Contact Info: 
Publication Type: 
Other
Year: 
2010
In press?: 
In Press
Resource Format: 

The second print edition from academic year 2010-11 of our student written science news publication, in pdf format. This is meant to be printed on large format paper, and folded, but it can be viewed online.

SciJourner Volume 2, Issue 1

Author(s): 
SciJourners
Contact Info: 
Publication Type: 
Other
Year: 
2009
In press?: 
In Press
Resource Format: 

The first print edition from academic year 2010-11 of our student written science news publication, in pdf format. This is meant to be printed on large format paper, and folded, but it can be viewed online.

Pages

Subscribe to Informal