Informal

Exploring COVID and the Effects on U.S. Education: Evidence from a National Survey of American Households

This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

Award Number: 
2037179
Funding Period: 
Wed, 07/15/2020 to Wed, 06/30/2021
Full Description: 

The COVID-19 epidemic has been a tremendous disruption to the education of U.S. students and their families, and early evidence suggests that this disruption has been unequally felt across households by income and race/ethnicity. While other ongoing data collection efforts focus on understanding this disruption from the perspective of students or educators, less is known about the impact of COVID-19 on children's prek-12 educational experiences as reported by their parents, especially in STEM subjects. This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

Since March of 2020, the UAS has been tracking the educational impacts of COVID-19 for a nationally representative sample of approximately 1,500 households with preK-12 children. Early results focused on quantifying the digital divide and documenting the receipt of important educational serviceslike free meals and special education servicesafter COVID-19 began. This project will support targeted administration of UAS questions to parents about students' learning experiences and engagement, overall and in STEM subjects, data analysis, and dissemination of results to key stakeholder groups. Findings will be reported overall and across key demographic groups including ethnicity, disability, urbanicity, and socioeconomic status. The grant will also support targeted research briefs addressing pressing policy questions aimed at supporting intervention strategies in states, districts, and schools moving forward. Widespread dissemination will take place through existing networks and in collaboration with other research projects focused on understanding the COVID-19 crisis. All cross-sectional and longitudinal UAS data files will be publicly available shortly after conclusion of administration so that other researchers can explore the correlates of, and outcomes associated with, COVID-19.

Incorporating Professional Science Writing into High School STEM Research Projects

The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.

Lead Organization(s): 
Award Number: 
2010333
Funding Period: 
Wed, 07/15/2020 to Fri, 06/30/2023
Project Evaluator: 
Maya Patel
Full Description: 

This exploratory project addresses important challenge of incorporating disciplinary literacy practices in scientific inquiry projects of high school students. The project will incorporate the peer-review process and publication in the Journal of Emerging Investigators (JEI). The Next Generation Science Standards emphasize constructs from disciplinary literacy such as engaging in argument from evidence, and evaluating and communicating information. However, there are few resources available to students and teachers that integrate these constructs in authentic forms that reflect the practices of professional scientists. High school student learners engage in scientific inquiry, but rarely participate in authentic forms of communication, forms that are reflective of how scientists communicate and participate in the primary literature of their fields. The project has three aims: 1) Generate knowledge of the impact of peer-review and publication on perceptions and skills of scientific inquiry and STEM identity, 2) Generate knowledge of how participation in peer-review and publication are impacted by contextual factors (differences in mentors and research contexts), and 3) Develop JEI field-guides across a range of contexts in which students conduct their research.

The goal of the project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry. The project will investigate how participation in peer-reviewed publications will have an impact on student learning by administering a set of pre- and post-surveys to students who submit a paper to JEI. The project will expand student participation in JEI via outreach to teachers in under-resourced and remote areas by delivering virtual and in-person workshops which will serve to demystify peer review and publication, and explore ways to integrate these processes into existing inquiry projects. Other efforts will focus on understanding how student contextual experiences can impact their learning of scientific inquiry. These student experiences include the location of the project (school, home, university lab), the type of mentor they have, and how they became motivated to pursue publication of their research. The project will recruit students from under-resourced schools in New York through a collaboration with MathForAmerica and from rural areas through outreach with STEM coordinators in the Midwest. The resources created will be disseminated directly on the JEI website.

Supporting Students' Language, Knowledge, and Culture through Science

This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

Lead Organization(s): 
Award Number: 
2010633
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

The Language, Culture, and Knowledge-building through Science project seeks to explore and positively influence the work of science teachers at the intersection of three significant and ongoing challenges affecting U.S. STEM education. First, U.S. student demographics are rapidly changing, with an increasing number of students learning STEM subjects in their second language. This change means that all teachers need new skills for meeting students where they currently are, linguistically, culturally, and in terms of prior science knowledge. Second, the needs and opportunities of the national STEM workforce are changing rapidly within a shifting employment landscape. This shift means that teachers need to better understand future job opportunities and the knowledge and skills that will be necessary in those careers. Third, academic expectations in schools have changed, driven by changes in education standards. These new expectations mean that teachers need new skills to support all students to master a range of practices that are both conceptual and linguistic. To address these challenges, teachers require new models that bring together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. This project begins with such an initial model, developed collaboratively with science teachers in a prior project. The model will be rigorously tested and refined in a new geographic and demographic context. The outcome will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

This project model starts with three theoretical constructs that have been integrated into an innovative framework of nine practices. These practices guide teachers in how to simultaneously support students' language development, cultural sustenance, and knowledge building through science with a focus on supporting and challenging multilingual learners. The project uses a functional view of language development, which highlights the need to support students in understanding both how and why to make shifts in language use. For example, students' attention will be drawn to differences in language use when they shift from language that is suited to peer negotiation in a lab group to written explanations suitable for a lab report. Moving beyond a funds of knowledge approach to culture, the team view of integrating students' cultural knowledge includes strengthening the role of home knowledge in school, but also guiding students to apply school knowledge to their out-of-school interests and passions. Finally, the project team's view of cumulative knowledge building, informed by work in the sociology of knowledge, highlights the need for teachers and students to understand the norms for meaning making within a given discipline. In the case of science, the three-dimensional learning model in the Next Generation Science Standards makes these disciplinary norms visible and serves as a launching point for the project's work. Teachers will be supported to structure learning opportunities that highlight what is unique about meaning making through science. Using a range of data collection and analysis methods, the project team will study changes in teachers' practices and beliefs related to language, culture and knowledge building, as teachers work with all students, and particularly with multilingual learners. The project work will take place in both classrooms and out of class science learning settings. By working closely over several years with a group of fifty science teachers spread across the state of Oregon, the project team will develop a typology of teachers (design personas) to increase the field's understanding of how to support different teachers, given their own backgrounds, in preparing all students for the broad range of academic and occupational pathways they will encounter.

Pandemic Learning Loss in U.S. High Schools: A National Examination of Student Experiences

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic.

Lead Organization(s): 
Award Number: 
2030436
Funding Period: 
Fri, 05/15/2020 to Fri, 04/30/2021
Full Description: 

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.

This study will collect data using the AmeriSpeak Teen Panel of approximately 2,000 students aged 13 to 17 and the Infinite Campus Student Information System with a sample of approximately 2.5 million high school students. The data sets allow for relevant comparisons of student experiences prior to and during the COVID-19 pandemic and offer unique perspectives with nationally representative samples of U.S. high school students. New data collection will focus on formal and informal STEM learning opportunities, engagement, STEM course taking, the nature and frequency of instruction, interactions with teachers, interest in STEM, and career aspirations. Weighted data will be analyzed using descriptive statistics and within and between district analysis will be conducted to assess group differences. Estimates of between group pandemic learning loss will be provided with attention to demographic factors.

This RAPID award is made by the DRK-12 program in the Division of Research on Learning. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics by preK-12 students and teachers, through the research and development of new innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for the projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

 

 

 

 

Looking Back and Looking Forward: Increasing the Impact of Educational Research on Practice

The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.

Lead Organization(s): 
Award Number: 
1941494
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The focus of the proposed conference is to carefully examine past and current research with an eye toward improving its impact on practice. This conference is designed to create concrete steps that could shape the nature and impact of mathematics education research for years to come. A diverse group of 50 participants will be invited to participate. Participants include 10 experienced K-12 educators whose perspectives will be used to anchor the conference in problems of practice. Other participants represent senior through more junior scholars who have demonstrated a commitment to addressing the disconnect between research and practice, along with technology experts to advise participants on capabilities and innovative uses of modern technologies for instruction, assessment and data management.

The overarching goal for the conference is to help the field of mathematics education think deeply about the most productive ways to answer the following questions: [1] Why hasn't past research had a more direct impact on practice? What can be learned from this historical analysis for future research? [2] What is a possible vision for research that would have a more direct impact on practice? What questions should be asked? What methods should be used? What concrete steps can be taken to launch the new research programs? [3] What are the implications of adopting new kinds of research programs? If they gain traction, how will such changes affect the broader education community and infrastructure, including preservice teacher education, teacher professional development, and the training of future researchers? How should the roles of researchers and teachers change? What incentive structures might motivate these changes? How will new programs of research interact with existing programs?

Spanning Boundaries: A Statewide Network to Support Science Teacher Leaders to Implement Science Standards

This project will develop and test a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS).

Lead Organization(s): 
Award Number: 
1907460
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include building strong professional learning communities that foster ongoing professional growth among teachers, teacher leaders, and school administrators. This project responds to these priorities by developing and testing a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS). The new model for professional learning combines three key elements: 1) Focusing on teacher leaders who can interpret, translate, and incorporate new approaches and resources into local contexts, 2) Engaging the expertise of informal science education specialists who are well versed in teacher professional learning and experiential approaches to learning, and 3) Establishing a statewide network of peers who can share experiences beyond individual school and district contexts. By developing a geographically-distributed network of support for science teacher leaders, the project is poised to create more equitable access to high quality professional learning opportunities for teachers as well as provide much needed support to the disproportionate number of novice teachers in schools with high populations of historically underrepresented students in science.

This early stage design and development project is guided by two research questions: 1) How do teacher leaders utilize structures, practices, and tools within an informal science institution-based network to interpret, filter, and translate available resources into professional learning supports for localized implementation of phenomena-based instruction? And 2) How do the professional learning supports developed by teacher leaders become more aligned with best practices for professional development (e.g., active learning, sustained, coherent, collaborative, and content-based) and incorporate aspects of informal learning (e.g., choice and experiential learning) throughout their participation in an ISI-based network? The project will engage two cohorts of 25 middle and high school science teacher leaders in overlapping two-year, one-week summer institutes, and a minimum of 12 online meetings during the academic years. The 30-hour summer institutes will be designed to address the multiple roles of teacher leaders as learners, classroom teachers, and teacher professional development providers. To sustain professional development across the academic year, monthly two-hour online meetings will be used to nurture the community of practice. Some sessions will focus on leadership and topics related to the NGSS, and other sessions will focus on deepening science content knowledge. The sources of data to be used in addressing the research questions include: 1) Video recordings, field notes of observations, and artifacts of professional development meetings, 2) Interviews with teacher leaders, and 3) Journal entries and artifacts from professional development sessions implemented by teacher leaders.  

Developing and Investigating Unscripted Mathematics Videos

This project will use an alternative model for online videos to develop video units that feature the unscripted dialogue of pairs of students. The project team will create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level.

Lead Organization(s): 
Award Number: 
1907782
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

This project responds to the recent internet phenomenon of widespread accessibility to online instructional videos, which offer many benefits, such as student control of the pace of learning. However, these videos primarily focus on a single speaker working through procedural problems and providing an explanation. While the immense reach of free online instructional videos is potentially transformative, this potential can only be attained if access transcends physical availability to also include entry into important disciplinary understandings and practices, and only if the instructional method pushes past what would be considered outdated pedagogy in any other setting than a digital one. This project will use an alternative model for online videos, originally developed for a previous exploratory project, to develop 6 video units that feature the unscripted dialogue of pairs of students. The project team will use the filming and post-production processes established during the previous grant to create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level. They will also conduct 8 research studies to investigate the promise of these unscripted dialogic videos with a diverse population to better understand the vicarious learning process, which refers to learning from video- or audio-taped presentations of other people learning. Additionally, the project team will provide broader access to the project videos and support a variety of users, by: (a) subtitling the videos and checking math task statements for linguistic accessibility; (b) representing diversity of race, ethnicity, and language in both the pool of students who appear in the videos and the research study participants; (c) providing teachers with an array of resources including focus questions to pose in class with each video, printable task worksheets, specific ways to support dialogue about the videos, and alignment of the video content with Common Core mathematics standards and practices; and (d) modernizing the project website and making it functional across a variety of platforms.

The videos created for this project will feature pairs of students (called the talent), highlighting their unscripted dialogue, authentic confusion, and conceptual resources. Each video unit will consist of 7 video lessons (each split into 4-5 short video episodes) meant to be viewed in succession to support conceptual development over time. The project will build upon emerging evidence from the exploratory grant that as students engage with videos that feature peers grappling with complex mathematics, they can enter a quasi-collaborative relationship with the on-screen talent to learn complex conceptual content and engage in authentic mathematical practices. The research focuses on the questions: 1. What can diverse populations of vicarious learners learn mathematically from dialogic videos, and how do the vicarious learners orient to the talent in the videos? 2. What is the nature of vicarious learners' evolving ways of reasoning as they engage with multiple dialogic video lessons over time and what processes are involved in vicarious learning? and, 3. What instructional practices encourage a classroom community to adopt productive ways of reasoning from dialogic videos? To address the first question, the project team will conduct two Learning Outcomes and Orientation Studies, in which they analyze students' learning outcomes and survey responses after they have learned from one of the video units in a classroom setting. Before administering an assessment to a classroom of students, they will first conduct an exploratory Interpretation Study for each unit, in which they link the mathematical interpretations that VLs generate from viewing the project videos with their performance on an assessment instrument. Both types of studies will be conducted twice, once for each of two video units - Exponential Functions and Meaning and Use of Algebraic Symbols. For the second research question, the project team will identify a learning trajectory associated with each of four video units. These two learning trajectories will inform the instructional planning for the classroom studies by identifying what meaningful appropriation can occur, as well as conceptual challenges for VLs. By delivering learning trajectories for two additional units, the project can contribute to vicarious learning theory by identifying commonalities in learning processes evident across the four studies. For the final research question, the project team will investigate how instructors can support students with the instrumental genesis process, which occurs through a process called instrumental orchestration, as they teach the two videos on exponential functions and algebraic symbols.

Designing and Researching a Program for Preparing Teachers as Facilitators of Computational Making Activities in Classroom and Informal Learning Environments

This project will study a model of pre-service teacher preparation that is designed to to increase teachers' and students' skills and confidence with computational thinking and develop teachers as designers of inclusive learning environments to promote computational thinking. The project will engage elementary (grades K-5) pre-service teachers (who are concurrently involved in school-based teacher preparation programs) as facilitators in an existing family technology program called Family Creative Learning (FCL).

Project Email: 
Lead Organization(s): 
Award Number: 
1908351
Funding Period: 
Thu, 08/01/2019 to Sat, 07/31/2021
Project Evaluator: 
Full Description: 

This project will study a model of pre-service teacher preparation that is designed to to increase teachers' and students' skills and confidence with computational thinking and develop teachers as designers of inclusive learning environments to promote computational thinking. The project will build teachers' recognition of diverse family learning and cultural resources. The project will engage elementary (grades K-5) pre-service teachers (who are concurrently involved in school-based teacher preparation programs) as facilitators in an existing family technology program called Family Creative Learning (FCL). This program is embedded in the Denver Public Library (DPL) network of makerspaces. The project will study pre-service elementary teachers' computational thinking and facilitation practices and its impact on children's learning across informal and classroom settings where pre-service teachers concurrently conduct their field work. The project team will develop research-based resources, tools, and activities that help to cultivate these key facilitation practices. These practices will include how to develop trust and relationships, to deepen participation and interests, and to ask questions that encourage inquiry. These resources will be useful for teacher preparation and for staff at informal learning organizations with making and tinkering spaces promoting STEM learning, specifically computational thinking. The project will disseminate resources through current relationships with PBS Kids and through networks of educators such as MakerEd, Connected Learning Alliance, and technology education networks.

The project will research: (1) what features of pre-service teachers' experiences preparing for and facilitating the FCL program at DPL supports or limits their development of facilitation practices and computational thinking; (2) study how teachers and participants learn and develop in their joint engagement with computational thinking through making; (3) examine how teachers carry over and influence student's learning in their fieldwork within classroom settings. The project team will use ethnographic methods to develop comparative case studies of pre-service teachers' development and the impact on student learning across formal and informal learning settings. These methods include observation, interviews, and artifact collection to closely document what supports new facilitators to engage in facilitation practices of computational thinking activities and its consequential impact on student and family learning. An external advisory board with relevant expertise will provide iterative feedback and assess the project's progress in meeting its goals. The project results have implications for teaching practices across formal and informal learning spaces that aim to engage diverse participants in interest-driven, peer-supported, and project-based STEM learning experiences.

Alternative video text
Alternative video text: 

Usable Measures of Teacher Understanding: Exploring Diagnostic Models and Topic Analysis as Tools for Assessing Proportional Reasoning for Teaching

This project seeks to measure the kinds of knowledge developed in professional development (PD) programs that have been shown to matter for teachers' classroom practices and their students' learning. The project aims to develop an assessment that identifies patterns in the teachers' learning in a way that helps drive subsequent PD.The overall goal of this project is to pursue a potentially transformative approach to the assessment of teacher proportional knowledge by developing a measure that is well aligned with the content and skills taught in various PD programs.

Award Number: 
1813760
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

One of the great challenges related to teachers and their knowledge is measuring their learning in ways that are both formative and meaningful in relation to their likely impact on students. This challenge persists despite efforts to define the knowledge teachers should have and despite previous innovative efforts to create good measures. This project tackles the challenge by specifically aiming to measure the kinds of knowledge developed in professional development (PD) programs that has been shown to matter for teachers' classroom practices and their students' learning. The project aims to develop an assessment that identifies patterns in the teachers' learning in a way that helps drive subsequent professional development.

The overall goal of this project is to pursue a potentially transformative approach to the assessment of teacher proportional knowledge by developing a measure that is well aligned with the content and skills taught in various PD programs. This instrument will be based on a new approach that builds on emerging psychometric models. Specifically, diagnostic classification models (DCMs) will be utilized to diagnose teachers' learning during a PD program as well as employed to identify the progression in teachers' learning.  Statistical topic models (STMs) will be used to look for patterns of understanding that emerge from open-ended responses and provide natural-language insight into teachers' reasoning. A final version of the assessment will be constructed for a national sample based on the results from the predictive validity stage, and this version will be tested with teachers who participate in various types of PD programs targeting proportional reasoning. This project has broad implications for the creation of assessments and for teacher education. It will provide insights about whether there is a clear learning progression for teachers. While much work has been done with students' learning progression, much less is known about how teachers learn. Another implication is that the STM approach allows machine scoring of natural language in a way that highlights strengths and weaknesses in reasoning rather than simply returning a score. For formative use, this is information that is more helpful as it highlights areas for further instruction. A third implication is that DCMs will allow to assess teacher knowledge at a finer-grained understanding than is typically available, thus allowing for careful refinement of PD as well as a tool for showing overall growth in PD. A fourth implication is that a more systematic approach will be followed to capture the kinds of knowledge teachers need. Assessments developed using DCMs and STMs have the potential to serve as models for developing further instruments in other STEM content areas. Such assessments have the potential to not only help identify successful PD programs, but also to provide PD providers with rich data from which they can make instructional decisions.

LabVenture - Revealing Systemic Impacts of a 12-Year Statewide Science Field Trip Program

This project will examine the impact of a 12-year statewide science field trip program called LabVenture, a hands-on program in discovery and inquiry that brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) to become fully immersed in explorations into the complexities of local marine science ecosystems.

Award Number: 
1811452
Funding Period: 
Sat, 09/01/2018 to Thu, 08/31/2023
Full Description: 

This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

Pages

Subscribe to Informal