Teachers

CAREER: Designing Learning Environments to Foster Productive and Powerful Discussions Among Linguistically Diverse Students in Secondary Mathematics

Award Number: 
1553708
Funding Period: 
Mon, 02/01/2016 to Sun, 01/31/2021
Full Description: 

The project will design and investigate learning environments in secondary mathematics classrooms focused on meeting the needs of English language learners. An ongoing challenge for mathematics teachers is promoting deep mathematics learning among linguistically diverse groups of students while taking into consideration how students' language background influences their classroom experiences and the mathematical understandings they develop. In response to this challenge, this project will design and develop specialized instructional materials and guidelines for teaching fundamental topics in secondary algebra in linguistically diverse classrooms. The materials will incorporate insights from current research on student learning in mathematics as well as insights from research on the role of language in students' mathematical thinking and learning. A significant contribution of the work will be connecting research on mathematics learning generally with research on the mathematics learning of English language learners. In addition to advancing theoretical understandings, the research will also contribute practical resources and guidance for mathematics teachers who teach English language learners. The Faculty Early Career Development (CAREER) program is a National Science Foundation (NSF)-wide activity that offers awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organizations.

The project is focused on the design of specialized hypothetical learning trajectories that incorporate considerations for linguistically diverse students. One goal for the specialized trajectories is to foster productive and powerful mathematics discussions about linear and exponential rates in linguistically diverse classrooms. The specialized learning trajectories will include both mathematical and language development learning goals. While this project focuses on concepts related to reasoning with linear and exponential functions, the resulting framework should inform the design of specialized hypothetical learning trajectories in other topic areas. Additionally, the project will add to the field's understanding of how linguistically diverse students develop mathematical understandings of a key conceptual domain. The project uses a design-based research framework gathering classroom-based data, assessment data, and interviews with teachers and students to design and refine the learning trajectories. Consistent with a design-based approach, the project results will include development of theory about linguistically diverse students' mathematics learning and development of guidance and resources for secondary mathematics teachers. This research involves sustained collaboration with secondary mathematics teachers and the impacts will include developing capacity of teachers locally, and propagating the results of this work in professional development activities.

Transforming Teaching Through Implementing Inquiry (T2I2)

This project explores the use of cyberinfrastructure to significantly enhance the delivery and quality of professional development for grades 8-12 engineering, technology, and design educators. The goal of the project is to study whether the use of highly interactive cyberinfrastructure increases the educator's teaching competencies and how to effectively teach. Student achievement is measured by comparing state assessments in: the curriculum's technology, engineering, and design assessment, end-of-grade mathematics assessment, and end-of-grade science assessment.

Award Number: 
1156629
Funding Period: 
Mon, 08/01/2011 to Fri, 07/31/2015
Full Description: 

Transforming Teaching Through Implementing Inquiry (T2I2) is a full research and development project that explores the use of cyberinfrastructure to significantly enhance the delivery and quality of professional development (PD) for grades 8-12 engineering, technology, and design educators. The goal of the project is to study whether the use of highly interactive cyberinfrastructure increases this target audience's: 1) understanding of engineering design concepts and ability to effectively teach them 2) understanding of how to address student learning needs 3) ability to manage, monitor, and adjust the learning environment 4) use of self assessment to enhance teaching ability and 5) engagement in a community of practice. These issues are of particular interest because of the limited resources in place to prepare pre-service engineering and CTE teachers, as well as a lack of in-service PD.

The content for the PD is grounded in the materials and processes of two projects reviewed by the National Research Council's (NRC) report review committee: Technology Education: Learning by Design for Middle Schools" and "Engineering by Design for High Schools." By incorporating an object-oriented generic system design (learning objects), the cyberinfrastructure is set to be reusable, adaptable, and scalable. These learning objects allow for customization of the learning experience, whereby learning facilitators or learners themselves can configure the system based on their specific needs. Delivering learning objects in an online framework enables teachers to develop and grow in a network community.

A mixed methods approach is used to determine effects of professional development. Student achievement is measured by comparing each site's state assessments in the following areas: the curriculum's technology, engineering, and design assessment, end-of-grade mathematics assessment, and end-of-grade science assessment. Both formative and summative evaluation strategies inform the development and implementation of the project. As such, the project will advance theory, design, and practice in middle and high school engineering.

Universal BEATS: Universal BioMusic Education Achievement Tier in Science

UNCG and NCSU are developing instructional resources for grades-2–5 students that infuse cutting-edge content from the emerging field of biomusic into standards-based elementary science and music curricula. The approach uses the musical sounds of nature to help students learn concepts in biology, physical science, and anthropology. Curriculum is undergoing beta-testing across North Carolina in diverse school settings.

Partner Organization(s): 
Award Number: 
0733180
Funding Period: 
Tue, 01/01/2008 to Thu, 06/30/2011
Project Evaluator: 
Amy Germuth
Full Description: 

Universal BEATS is a DRK12 exploratory project that engages a wider range of elementary school students more deeply in science through innovatively infusing concepts and methods from an emerging scientific field, BioMusic, into standards-based elementary science and music curricula. In aiming at two of the three “Grand Challenges” laid out by NSF 06-593: Discovery Research K-12—“elementary grades science” and “cutting-edge STEM content in K-12 classrooms”—Universal BEATS simultaneously leverages and extends the impact of an NSF-funded informal science exhibition, Wild Music, and an NSF-funded model Research Experiences for Teachers site. Developed by the Music Research Institute (MRI) at the University of North Carolina-Greensboro in collaboration with North Carolina State University‘s Department of Mathematics, Science, and Technology Education and the Kenan Institute for Engineering, Technology, and Science’s Kenan Fellows Program (KFP), Universal BEATS enables grades 2-5 students to explore the emerging interdisciplinary field of BioMusic. The project uses music and natural sound to explore and develop instructional resources in biodiversity, human development, neurophysiology, human evolution, cultural diversity, and the physics of sound. The goal is to provide a rich, interdisciplinary educational environment in which teachers, in partnership with leading scientists in BioMusic and a team of science and music educators, develop, pilot and refine standards-based curricula that introduce elementary-aged students to the deep roots of human music.

An Intelligent Ecosystem for Science Writing Instruction

The ability to express scientific ideas in both written and oral form is an important 21st century skill. This project would help teachers help students achieve these skills through automating an effective feedback process, in ways that are customized to particular disciplines and local classroom needs, particularly in high needs districts. The project will contribute to knowledge about how students learn to write and how computer assisted systems can support this learning.

Lead Organization(s): 
Award Number: 
1416980
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

The ability to express scientific ideas in both written and oral form is an important 21st century skill. Teachers, employers, and college faculty lament the inability of many high school graduates to write clearly. This deficit in writing is due in part because teachers do not have the time to provide appropriate, timely feedback to students on their writing. This project would help teachers help students achieve these skills through automating an effective feedback process, in ways that are customized to particular disciplines and local classroom needs, particularly in high needs districts. The project will contribute to knowledge about how students learn to write and how computer assisted systems can support this learning.

This project will develop and test three tools: 1) Teaching resources organized as developmental trajectories for teachers to use (e.g. from more simple to more complex; with diagnostics and strategies for addressing particular challenges); 2) A teacher dashboard that uses Artificial Intelligence tools to provide timely formative assessment to teachers by highlighting problem areas in their students' writing and peer reviews; and 3) An online teacher resource exchange to rapidly grow the set of appropriate assignments that can be used with this approach, critically filtered by student performance metrics. The project builds on a current system called SWoRD, which supports student peer reviewing in many disciplines within and beyond science. Working with six lead teachers and larger set of pilot teachers, the project will develop a trajectory of effective writing assignments in Biology, Chemistry, and Physics. In year three, there will be a summative evaluation with 90 teachers.

A Task Force on Conceptualizing Elementary Mathematical Writing: Implications for Mathematics Education Stakeholders

The Elementary Mathematical Writing (EMW) Task Force was made up of educators with unique perspectives about elementary mathematical writing and with the goal to reach a consensus about and priorities for the types of and purposes for elementary mathematical writing. The EMW Task Force met in October 2015, analyzed elementary writing prompts and samples, standards documents, and recommendations, and identified four types of mathematical writing and their associated purposes: Exploratory, Informative/Explanatory, Argumentative, and Mathematically Creative.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1545908
Funding Period: 
Tue, 09/01/2015 to Wed, 08/31/2016
Full Description: 

Communicating about mathematical ideas by talking and writing is central to the teaching and learning of mathematics as it can help students learn concepts at a deeper level. More specifically, according to the Common Core State Standards (CCSS), students should develop their ability to construct viable arguments and critique the reasoning of others in mathematics and write across content areas. However, there is limited guidance about how to teach students to write mathematically, how to evaluate students' mathematical writing, and the kinds of mathematical writing tasks to include in curriculum resources. This may mean that students do not experience the benefits from writing about their mathematical ideas.

The Elementary Mathematical Writing (EMW) Task Force was made up of educators who bring unique perspectives about elementary mathematical writing. It included practitioners and academics from the fields of mathematics education, mathematics, and writing education and who are knowledgeable about students who have special needs, are English language learners, and have been identified as gifted. With the ultimate goal of reaching consensus about and priorities for the types of and purposes for elementary mathematical writing, the task force reviewed student work, writing prompts, curriculum standards, and other items. They also suggested recommendations for future work in this area.

The EMW Task Force meth the goals of identifying, describing, and recommending productive types of and purposes for mathematical writing by elementary students. The four types of mathematical writing are:

  • Exploratory – with the purpose of personally making sense of a problem, situation, or one’s own ideas.
  • Informative/Explanatory – with the purposes of describing or explaining mathematical ideas.
  • Argumentative – with the purposes of constructing viable arguments and/or critiquing the reasoning of others.
  • Mathematically Creative – with the purposes of documenting original ideas, problems, and/or solutions; conveying fluency and flexibility in thinking; and elaborating on ideas.

The work and recommendations of the EMW Task force highlights the necessity of a comprehensive line of work related to mathematical writing at a critical juncture in the history of the field of mathematics education. The intellectual merit of this project, therefore, is in its potential to transform the field of mathematics education. The broader impacts include the facilitation of collaboration among and across disciplines and stakeholders.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Three-Dimensional Teaching and Learning: Rebuilding and Researching an Online Middle School Curriculum

This project will develop an online curriculum-based supported by a teacher professional development (PD) program by rebuilding an existing life science unit of Biological Sciences Curriculum Study (BSCS) Middle School Science. The project is designed to be an exemplar of fully digital Next Generation Science Standards (NGSS) aligned resources for teachers and students, creating an NGSS-aligned learning environment combining disciplinary core ideas with science and engineering practices and cross-cutting concepts.

Award Number: 
1502571
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project was funded by the Discovery Research K-12 (DRK-12) program that seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The project, in collaboration with Oregon Public Broadcasting, will develop an online curriculum-based supported by a teacher professional development (PD) program by rebuilding an existing life science unit of Biological Sciences Curriculum Study (BSCS) Middle School Science. The materials will include strategically integrated multimedia elements including animations, interactive learning experiences, and enhanced readings for students, as well as classroom videos for teachers that will help all users gain a deeper understanding of three-dimensional learning. The project is designed to be an exemplar of fully digital Next Generation Science Standards (NGSS) aligned resources for teachers and students, creating an NGSS-aligned learning environment combining disciplinary core ideas with science and engineering practices and cross-cutting concepts. Using the powerful affordances of a digital environment, the project will invigorate and inspire learners and support teachers as only a media-rich environment can do.

The project will develop and research the project innovation, the combination of digital instructional materials for students and online teacher PD using a proven lesson-analysis framework. Although prior research has demonstrated the efficacy of the lesson analysis PD and curriculum elements independently, there has been little investigation of their joint ability to transform teaching and learning. The project will merge research and development in this project by incorporating a complex array of multi-component assessment activities, including classroom-based assessments, in a quasi-experimental study. Assessment activities will be designed using an evidence-centered design process that will involve the careful selection and development of assessment tasks, scoring rubrics, and criteria for scoring based on the performance expectations (PEs) and the best ways to elicit evidence about student proficiency with those PEs. The research, carried out by SRI International, will use multi-component tasks that will support inferences about student learning and advance understanding of how to assess NGSS learning. Project research and resources, which will include a digital, middle school life sciences unit, teacher PD and online digital resources, and related assessment tools, which will be widely disseminated to policy makers, researchers, and practitioners.

Exploring Ways to Transform Teaching Practices to Increase Native Hawaiian Students' Interest in STEM

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

Lead Organization(s): 
Award Number: 
1551502
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This research is needed since Native Hawaiians are often stereotyped as poor learners; the available STEM workforce falls short of meeting the demands of STEM employers in the state; and as the largest group of public school enrollees, data show a greater decline in percent of students meeting or exceeding proficiency in science at higher grade levels. This project will address these issues by transforming the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

The professional development model for teachers will be situated in the larger national and global contexts of an increasingly technology oriented, urbanized society with associated marginalization of indigenous people whose traditional ecological knowledge and indigenous languages are often overlooked. Guided by the cultural mental model theory and a mixed methods approach, data will be collected through document analysis, surveys, individual and focus group interviews, and pre-post assessments. This approach will capture initials findings about the influence of the professional development model on teaching and learning in science. The end products from this project will be an improved professional development model that is more sensitive to contexts that promote learning by Native Hawaiian students. It will also produce a survey instrument to assess student interest and engagement in science learning whose teachers will have participated in the professional development model being explored. Both outcomes will potentially be instrumental in changing the way approximately 2000 Native Hawaiian students learn about and become more interested in STEM fields through their natural world.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards

This project will conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level which is aligned with the Next Generation Science Standards (NGSS).

Award Number: 
1551143
Funding Period: 
Tue, 09/01/2015 to Thu, 08/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards is an exploratory project to conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level. Research and Curriculum Development team consisting of master elementary science teachers, university professors including science, engineering, and science teacher education faculty, and a science education post doc or graduate student will engage in developing the Next Generation Science Standards (NGSS) aligned curricula integrating science, engineering, and language arts, and publishing STEM education research. The importance of this project will be the development of curricula integrating science, engineering, and language arts at the elementary level. Lesson plans or teaching activities in the integrated curricula will be written in practitioner article format. In the NGSS the engineering design is raised to the same level as scientific inquiry and included as a vital element of science education. This integrated approach aims to provide three-dimensional learning experience as specified in the NGSS to elementary students while meaningfully integrating engineering, science, reading, and writing through real life engineering design problems. The NGSS aligned curricula that will be developed in this project can also be used in other states that adopted the NGSS.

An Integrated curriculum for grades 1-2 will be developed in year 1. In year 2, the project will develop a curriculum for grades 3-5. Each year, the project will develop and field-test a new curriculum, and provide professional development organized around the integrated curriculum to 20 elementary teachers at the Clark County School District in Las Vegas, Nevada.

PlantingScience: Digging Deeper Together - A Model for Collaborative Teacher/Scientist Professional Development

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning.

Lead Organization(s): 
Award Number: 
1502892
Funding Period: 
Thu, 10/01/2015 to Mon, 09/30/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning. The project will also develop and test the outcomes of a summer institute for teachers and a website that will support the online mentoring of students and the professional development of teachers. Outcomes of the project will include the development of a facilitation guide for the teacher professional development model, a website to support student mentoring and teacher professional development, a series of resources for teachers and scientists to use in working with students, and empirical evidence of the success of the new professional development model.

This full research and development project will employ a pre-test/post-test control group design to test the efficacy of a professional development model for high school biology teachers. The professional development model is grounded in a theory of action based on the premise that when teachers are engaged with scientists and students in a technology-enabled learning community, students will demonstrate higher levels of achievement than those using more traditional instructional materials and methodologies. The means of post-intervention outcome measures will be compared across treatment and comparison groups in a cluster-randomized trial where teachers will be randomly assigned to treatment groups. The study will recruit a nation-wide sample to ensure that participants represent a wide array of geographic and demographic contexts, with preference given to Title 1 schools. The research questions are: a) To what extent does participation in the Digging Deeper community of teachers and scientists affect teacher knowledge and practices? b) To what extent does participation in the Digging Deeper community of teachers and scientists affect scientists? quality of mentorship and teaching? And c) To what extent does student use of the online program and participation in the learning community with scientist mentors affect student learning? Instruments will be developed or adapted to measure relevant student and teacher knowledge, student motivation, and teacher practices. Computer-mediated discourse analysis will be used over the course of the study to track online interactions among students, teachers, and science mentors.

Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

Pages

Subscribe to Teachers