Native Hawaiians/Pacific Islanders

Looking Back and Looking Forward: Increasing the Impact of Educational Research on Practice

The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.

Lead Organization(s): 
Award Number: 
1941494
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The focus of the proposed conference is to carefully examine past and current research with an eye toward improving its impact on practice. This conference is designed to create concrete steps that could shape the nature and impact of mathematics education research for years to come. A diverse group of 50 participants will be invited to participate. Participants include 10 experienced K-12 educators whose perspectives will be used to anchor the conference in problems of practice. Other participants represent senior through more junior scholars who have demonstrated a commitment to addressing the disconnect between research and practice, along with technology experts to advise participants on capabilities and innovative uses of modern technologies for instruction, assessment and data management.

The overarching goal for the conference is to help the field of mathematics education think deeply about the most productive ways to answer the following questions: [1] Why hasn't past research had a more direct impact on practice? What can be learned from this historical analysis for future research? [2] What is a possible vision for research that would have a more direct impact on practice? What questions should be asked? What methods should be used? What concrete steps can be taken to launch the new research programs? [3] What are the implications of adopting new kinds of research programs? If they gain traction, how will such changes affect the broader education community and infrastructure, including preservice teacher education, teacher professional development, and the training of future researchers? How should the roles of researchers and teachers change? What incentive structures might motivate these changes? How will new programs of research interact with existing programs?

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Riordan)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Lead Organization(s): 
Award Number: 
1812660
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Methods for Assessing Replication

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies.

Lead Organization(s): 
Award Number: 
1841075
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Replication of prior findings and results is a fundamental feature of science and is part of the logic supporting the claim that science is self-correcting. However, there is little prior research on the methodology for studying replication. Research involving meta-analysis and systematic reviews that summarizes a collection of research studies is more common. However, the question of whether the findings from a set of experimental studies replicate one another has received less attention. There is no clearly defined and widely accepted definition of a successful replication study or statistical literature providing methodological guidelines on how to design single replication studies or a set of replication studies. The research proposed here builds this much needed methodology.

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies. It addresses three fundamental problems. The first is how to define replication: What, precisely, should it mean to say that the results in a collection of studies replicate one another? Second, given a definition of replication, what statistical analyses should be done to decide whether the collection of studies replicate one another and what are the properties of these analyses (e.g., sensitivity or statistical power)? Third, how should one or more replication studies be designed to provide conclusive answers to questions of replication? The project has the potential for impact on a range of empirical sciences by providing statistical tools to evaluate the replicability of experimental findings, assessing the conclusiveness of replication attempts, and developing software to help plan programs of replication studies that can provide conclusive evidence of replicability of scientific findings.

Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: Ellis)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Lead Organization(s): 
Award Number: 
1814033
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Building a Community of Science Teacher Educators to Prepare Novices for Ambitious Science Teaching

This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. It is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching.

Lead Organization(s): 
Award Number: 
1719950
Funding Period: 
Tue, 08/01/2017 to Tue, 07/31/2018
Full Description: 

There is a growing consensus among science teacher educators of a need for a shared, research-based vision of accomplished instructional practice, and for teacher education pedagogies that can effectively prepare preservice science teachers to support the science learning of students from all backgrounds. This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. This conference is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching. The conference has two goals. The first goal is to develop a shared vision and language about effective pedagogy of science teacher preparation, focusing on ambitious science teaching and practice-based approaches to science teacher preparation. The second goal is to initiate a professional community that can generate, test, revise, and disseminate a set of resources (curriculum materials, tools, videos, models of teacher educator pedagogies, etc.) to support teacher educators.

There are immediate and long-term broader impacts that will result from this conference. One immediate impact is that this conference will set forth an actionable research agenda for the participants and the field to take up around ambitious science teaching and practice-based teacher education. Such an agenda will help shape new work, involving institutional collaborations,teacher preparation programs, and national organizations. Such an outcome has the potential to immediately impact the work of the conference participants and their own teacher preparation programs. In the long-term, this conference provides an opportunity for the participants to consider how to use ambitious science teaching to address issues of equity and social justice in science education and schools. In addition, the broader impacts of this conference will be to spread a vision of science teaching and practice-based teacher preparation in which students' ideas and experiences are the raw material of teachers' work.

Building Capacity to Retain Underrepresented Students in STEM Fields

This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions.

Lead Organization(s): 
Award Number: 
1741748
Funding Period: 
Mon, 05/01/2017 to Mon, 04/30/2018
Full Description: 

The NSF invests in a number of programs targeting underrepresented populations and institutions relative to its meeting its goals for broadening participation in STEM. This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions. The workshop will focus on assisting minority serving institutions with use of research designs, and review of best practices for intervention shown to be effective in helping underrepresented student cope with chronic stresses that interfere with their retention in STEM fields and careers. The target audience for the workshop will be the participating institutions and their undergraduate students, in partnership with local K-12 schools.

In collaboration with Quality Education for Minority and MERAssociates, Rutgers University Newark will provide a unique setting to convene more than 100 participants to attend the workshop. The participants will include deans and/or department chairs; STEM faculty; educational researchers, and institutional representatives such as Vice Presidents of Academic Affairs, Provosts, or other administrators. The participants will work in teams of 4-5 to address science research topics and activities related to curriculum development, teacher support, and student engagement. Outcomes from the workshops will provide insights about successful strategies, areas of future research, and awareness about the need for better intervention models that support underrepresented minority students in STEM.

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Supporting Teacher Practice to Facilitate and Assess Oral Scientific Argumentation: Embedding a Real-Time Assessment of Speaking and Listening into an Argumentation-Rich Curriculum (Collaborative Research: Henderson)

The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

Lead Organization(s): 
Award Number: 
1621496
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This is an early-stage design and development collaborative study submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) program, in response to Program Solicitation NSF 15-592. The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. To achieve this purpose, the project will examine the validity of a new technology-based formative assessment tool for classroom argumentation--"Diagnosing the Argumentation Levels of Groups" (DiALoG)--for which psychometric validation work has been conducted in a laboratory setting. The DiALoG assessment tool allows teachers to document classroom talk and display scores across multiple dimensions--both intrapersonal and interpersonal--for formative assessment purposes. The project will work with 6th-8th grade science teachers to monitor and support argumentation through real-time formative assessment data generated by the DiALoG instrument. DiALoG will be used in conjunction with "Amplify Science", a Lawrence Hall of Science-developed curriculum that incorporates the science practice of engaging in argument from evidence, and a suite of newly developed Responsive Mini-Lessons (RMLs), which consist of 20-30 minute instructional strategies designed to assist teachers to provide feedback to students' thinking and follow-up to argumentation episodes that the DiALoG tool identifies in need of further support. The study will allow the refinement and expansion of DiALoG and evaluation of its impact on teacher pedagogical content knowledge and formative assessment practices in widespread classroom use.

The project will address two specific research questions: (1) How can DiALoG be refined to provide a formative assessment tool for oral argumentation that is reliable, practical, and useful in middle school classrooms?; and (2) How does the use of DiALoG affect teacher formative assessment practices around evidence-based argumentation, when implementing science units designed to support oral argumentation? In order to answer these questions, the project will conduct a randomized control trial with 100 teachers: 50 will teach argumentation-focused curriculum with DiALoG, 50 will teach the same curriculum without DiALoG. Both control and treatment teachers will receive all digital and physical materials needed to teach three Amplify Science curriculum units. Treatment teachers will be provided also with the most recent version of DiALoG, including the linked RMLs, as well as support materials for using DiALoG with the Amplify curriculum. A subgroup of focus teachers (5 from the treatment group, and 5 from the control group) will be the subject of additional data collection and analysis. Three focus lessons, in which students are engaging in small-group or whole-class oral argumentation, will be selected from each of the three Amplify Science curricular units. Teacher measures for the randomized control trial will include validated instruments, such as (a) a pre- and post-assessment of teacher pedagogical content knowledge; (b) post-lesson and post-unit surveys in which teachers will self-report on their formative assessment practices; and (c) video recordings of selected lessons in the focus classrooms. In order to observe potential differences in formative assessment practices between treatment and control, protocols will be used to analyze the video recordings of focus classrooms, including (a) Reformed Teaching Observation Protocol; (b) Assessment of Scientific Argumentation inside the Classroom; and (c) Formative Assessment for Teachers and Students. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

Exploring Ways to Transform Teaching Practices to Increase Native Hawaiian Students' Interest in STEM

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

Lead Organization(s): 
Award Number: 
1551502
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This research is needed since Native Hawaiians are often stereotyped as poor learners; the available STEM workforce falls short of meeting the demands of STEM employers in the state; and as the largest group of public school enrollees, data show a greater decline in percent of students meeting or exceeding proficiency in science at higher grade levels. This project will address these issues by transforming the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

The professional development model for teachers will be situated in the larger national and global contexts of an increasingly technology oriented, urbanized society with associated marginalization of indigenous people whose traditional ecological knowledge and indigenous languages are often overlooked. Guided by the cultural mental model theory and a mixed methods approach, data will be collected through document analysis, surveys, individual and focus group interviews, and pre-post assessments. This approach will capture initials findings about the influence of the professional development model on teaching and learning in science. The end products from this project will be an improved professional development model that is more sensitive to contexts that promote learning by Native Hawaiian students. It will also produce a survey instrument to assess student interest and engagement in science learning whose teachers will have participated in the professional development model being explored. Both outcomes will potentially be instrumental in changing the way approximately 2000 Native Hawaiian students learn about and become more interested in STEM fields through their natural world.

Pages

Subscribe to Native Hawaiians/Pacific Islanders