Post-secondary

Developing and Validating Early Assessments of College Readiness: Differential Effects for Underrepresented Groups, Optimal Timing of Assessments, and STEM-Specific Indicators

This purpose of this project is to develop and validate a range of assessments with a focus on academic preparedness for higher education. The team will explore relevant qualities of assessments such as their differential predictive validity to ensure they are appropriate for underrepresented groups, the optimal grade level to begin assessing readiness, and measures that are most appropriate for predicting STEM-specific readiness.

Project Email: 
Award Number: 
1908630
Funding Period: 
Mon, 07/15/2019 to Wed, 06/30/2021
Project Evaluator: 
Full Description: 

One third of all college freshmen are academically unprepared for entry-level college coursework and require remedial course. That figure is much higher at many colleges. The problem is more acute in STEM disciplines, particularly among students from underrepresented ethnic groups and low socioeconomic status families. This purpose of this project is to develop and validate a range of assessments with a focus on academic preparedness for higher education. The team will explore relevant qualities of assessments such as their differential predictive validity to ensure they are appropriate for underrepresented groups, the optimal grade level to begin assessing readiness, and measures that are most appropriate for predicting STEM-specific readiness.

This project will use two recent and complementary large-scale, nationally representative federal databases: the High School Longitudinal Study of 2009 and the Education Longitudinal Study of 2002. Factor analysis will be used to develop composite variables of college readiness and multilevel regression will be used to develop predictive models on a range of college outcomes to test the predictive validity of composite and individual predictors. The models will be extended to conduct multiple group analyses to test for differential prediction for students from underrepresented groups. The project intends to promote 1) the use of a wider range of assessments of academic preparedness, 2) the use of measures that are more sensitive for assessing college readiness from underrepresented groups and among STEM majors, 3) earlier assessment using indicators and models with predictive validity and 4) progress monitoring of college readiness by providing a detailed example of how that can be developed and implemented. Findings will also raise student, parental, teacher, and other school personnel awareness of the range of factors relevant for preparing students for college.

Alternative video text
Alternative video text: 

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

Project Email: 
Award Number: 
1908900
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Project Evaluator: 
Full Description: 

California State University will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities (NIC sites). Networked Improvement Community (NIC) will co-create a shared vision and co-defined research agenda between university researchers, science educators and school district practitioners working together to reform teacher education across a variety of local contexts. By studying outcomes of shared supports and teacher tools for use in multiple steps along the science teacher education pathway, researchers will map variation existing in the system and align efforts across the science teacher education pathway. This process will integrate an iterative nature of educational change in local contexts impacting enactment of the NGSS in both university teacher preparation programs and in school district professional training activities and classrooms.

The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts. The project will accomplish this goal 1) leveraging the use of an established Networked Improvement Community, composed of science education faculty from eight university campuses and by 2) improving and studying coherence in the steps along the science teacher education pathway within and across these universities and school districts. The project will use a mixed methods approach to data collection and analysis. Consistent with Improvement Science Theory, research questions will be co-defined by all stakeholders.

Alternative video text
Alternative video text: 

Understanding the Role of Simulations in K-12 Science and Mathematics Teacher Education

This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

Lead Organization(s): 
Award Number: 
1813476
Funding Period: 
Sat, 09/01/2018 to Sat, 08/31/2019
Full Description: 

The recent emergence of updated learning standards in science and mathematics, coupled with increasingly diverse school students across the nation, has highlighted the importance of updating professional learning opportunities for science and mathematics teachers. One promising approach that has emerged is the use of simulations to engage teachers in approximations of practice where the focus is on helping them learn how to engage in ambitious content teaching. In particular, recent technological advances have supported the emergence of new kinds of digital simulations and have brought increased attention to simulations as a tool to enhance teacher learning. This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

While the use of simulations in teacher education is neither new nor limited to digital simulation, emerging technological capabilities have enabled digital simulations to become practical in ways not formerly available. The current literature base, however, is dated and the field lacks clear theoretic models or articulated theories of action regarding what teachers could or should learn via simulations, and the essential components of effective learning trajectories. This working conference will be structured to provide opportunities for attending, teacher educators, researchers, professional development facilitators, policy makers, preservice and inservice teachers, and school district leaders to share their current research, theoretical models, conceptual views, and use cases regarding the role of simulations in K-12 science and mathematics teacher education. The conference will be organized around four major goals, including: (1) Define how simulations (digital and non-digital) are conceptualized, operationalized, and utilized in K-12 science and mathematics teacher education; (2) Document and determine the challenges and affordances of the varied contexts, audiences, and purposes for which simulations are used in K-12 science and mathematics teacher education and the variety of investigation methods and research questions employed to investigate the use of simulations in these settings; (3) Make explicit the theories of action and conceptual views undergirding the various simulation models being used in K-12 science and mathematics teacher education; and (4) Determine implications of the current research and development work in this space and establish an agenda for studying the use of simulations in K-12 science and mathematics teacher education. The project will produce a white paper that presents the research and development agenda developed by the working conference, describes a series of use cases describing current and emergent practice, and identifies promising directions for future research and development in this area. Conference outcomes are expected to advance understanding of the varied ways in which digital and non-digital simulations can be used to foster and assess K-12 science and mathematics teacher competencies and initiate a research and development agenda for examining the role of simulations in K-12 science and mathematics teacher education.

Methods for Assessing Replication

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies.

Lead Organization(s): 
Award Number: 
1841075
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Replication of prior findings and results is a fundamental feature of science and is part of the logic supporting the claim that science is self-correcting. However, there is little prior research on the methodology for studying replication. Research involving meta-analysis and systematic reviews that summarizes a collection of research studies is more common. However, the question of whether the findings from a set of experimental studies replicate one another has received less attention. There is no clearly defined and widely accepted definition of a successful replication study or statistical literature providing methodological guidelines on how to design single replication studies or a set of replication studies. The research proposed here builds this much needed methodology.

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies. It addresses three fundamental problems. The first is how to define replication: What, precisely, should it mean to say that the results in a collection of studies replicate one another? Second, given a definition of replication, what statistical analyses should be done to decide whether the collection of studies replicate one another and what are the properties of these analyses (e.g., sensitivity or statistical power)? Third, how should one or more replication studies be designed to provide conclusive answers to questions of replication? The project has the potential for impact on a range of empirical sciences by providing statistical tools to evaluate the replicability of experimental findings, assessing the conclusiveness of replication attempts, and developing software to help plan programs of replication studies that can provide conclusive evidence of replicability of scientific findings.

Critical Issues in Mathematics Education 2018

This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years.

Award Number: 
1827412
Funding Period: 
Thu, 03/01/2018 to Thu, 02/28/2019
Full Description: 

This conference will continue the workshop series, Critical Issues in Mathematics Education (CIME) on teaching and learning mathematics, initiated by the Mathematical Sciences Research Institute (MSRI) in 2004. The topic for CIME 2018 will be "Access to mathematics by opening doors for students currently excluded from mathematics". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. Sessions will share relevant programmatic efforts and innovative research that have been shown to maintain or increase students' engagement and interests in mathematics across K-12, undergraduate and graduate education. The sessions will focus particularly on reproducible efforts that affirm those students' identities and their diverse intellectual resources and lived experience.

The CIME workshops impact three distinct communities: research mathematicians, mathematics educators (K-16), and education researchers. Participants learn about research and development efforts that can enhance their own work and the contributions they can make to solving issues in mathematics education. Participants also connect with others concerned about those issues. This workshop will also focus on developing action plans that participants can implement once they return to their institutions. There is also a focus on recruitment of leaders of mathematics departments, teachers, and other leaders in mathematics education across K-12, undergraduate education and graduate education in order to examine systemic changes that can be made to increase access, engagement, and interest in mathematics.

Developing and Validating Assessments to Measure and Build Elementary Teachers' Content Knowledge for Teaching about Matter and Its Interactions within Teacher Education Settings (Collaborative Research: Hanuscin)

The fundamental purpose of this project is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings.

Partner Organization(s): 
Award Number: 
1814275
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its fundamental purpose is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings. The selection of this topic will facilitate the development of a proof-of-concept to determine if and how CKT assessments can be developed and used to measure and build elementary teachers' CKT. Also, it will facilitate rapid and targeted refinement of an evidence-centered design process that could be applied to other science topics. Plans are to integrate CKT assessments and related resources into teacher education courses to support the ability of teachers to apply their content knowledge to the work of teaching and learning science. The project will combine efforts from prior projects and engage in foundational research to examine the nature of teachers' CKT and to build theories and hypotheses about the productive use and design of CKT assessment materials to support formative and summative uses. Likewise, the project will create a set of descriptive cases highlighting the use of these tools. Understanding how CKT science assessments can be leveraged as summative tools to evaluate current efforts, and as formative tools to build elementary teachers' specialized, practice-based knowledge will be the central foci of this effort.

The main research questions will be: (1) What is the nature of elementary science teachers' CKT about matter and its interactions?; and (2) How can the development of prospective elementary teachers' CKT be supported within teacher education? To address the research questions, the study will employ a mixed-methods, design-based research approach to gather various sources of validity evidence to support the formative and summative use of the CKT instrument, instructional tasks, and supporting materials. The project will be organized around two main research and development strands. Strand One will build an empirically grounded understanding of the nature of elementary teachers' CKT. Strand Two will focus on developing and studying how CKT instructional tasks can be used formatively within teacher education settings to build elementary teachers' CKT. In addition, the project will refine a conceptual framework that identifies the science-specific teaching practices that comprise the work of teaching science. This will be used as well to assess the CKT that teachers leverage when recognizing, understanding, and responding to the content-intensive practices that they engage in as they teach science. To that end, the study will build on two existing frameworks from prior NSF-funded work. The first was originally developed to create CKT assessments for elementary and middle school teachers in English Language Arts and mathematics. The second focuses on the content challenges that novice elementary science teachers face. It is organized by the instructional tools and practices that elementary science teachers use, such as scientific models and explanations. These instructional practices cut across those addressed in the Next Generation Science Standards' (NGSS; Lead States, 2013) disciplinary strands. The main project's outcomes will be knowledge that builds and refines theories about the nature of elementary teachers' CKT, and how CKT elementary science assessment materials can be designed productively for formative and summative purposes. The project will also result in the development of a suite of valid and reliable assessments that afford interpretations on CKT matter proficiency and can be used to monitor elementary teachers learning. An external advisory board will provide formative and summative feedback on the project's activities and progress.

Developing and Validating Assessments to Measure and Build Elementary Teachers' Content Knowledge for Teaching about Matter and Its Interactions within Teacher Education Settings (Collaborative Research: Mikeska)

The fundamental purpose of this project is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813254
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its fundamental purpose is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings. The selection of this topic will facilitate the development of a proof-of-concept to determine if and how CKT assessments can be developed and used to measure and build elementary teachers' CKT. Also, it will facilitate rapid and targeted refinement of an evidence-centered design process that could be applied to other science topics. Plans are to integrate CKT assessments and related resources into teacher education courses to support the ability of teachers to apply their content knowledge to the work of teaching and learning science. The project will combine efforts from prior projects and engage in foundational research to examine the nature of teachers' CKT and to build theories and hypotheses about the productive use and design of CKT assessment materials to support formative and summative uses. Likewise, the project will create a set of descriptive cases highlighting the use of these tools. Understanding how CKT science assessments can be leveraged as summative tools to evaluate current efforts, and as formative tools to build elementary teachers' specialized, practice-based knowledge will be the central foci of this effort.

The main research questions will be: (1) What is the nature of elementary science teachers' CKT about matter and its interactions?; and (2) How can the development of prospective elementary teachers' CKT be supported within teacher education? To address the research questions, the study will employ a mixed-methods, design-based research approach to gather various sources of validity evidence to support the formative and summative use of the CKT instrument, instructional tasks, and supporting materials. The project will be organized around two main research and development strands. Strand One will build an empirically grounded understanding of the nature of elementary teachers' CKT. Strand Two will focus on developing and studying how CKT instructional tasks can be used formatively within teacher education settings to build elementary teachers' CKT. In addition, the project will refine a conceptual framework that identifies the science-specific teaching practices that comprise the work of teaching science. This will be used as well to assess the CKT that teachers leverage when recognizing, understanding, and responding to the content-intensive practices that they engage in as they teach science. To that end, the study will build on two existing frameworks from prior NSF-funded work. The first was originally developed to create CKT assessments for elementary and middle school teachers in English Language Arts and mathematics. The second focuses on the content challenges that novice elementary science teachers face. It is organized by the instructional tools and practices that elementary science teachers use, such as scientific models and explanations. These instructional practices cut across those addressed in the Next Generation Science Standards' (NGSS; Lead States, 2013) disciplinary strands. The main project's outcomes will be knowledge that builds and refines theories about the nature of elementary teachers' CKT, and how CKT elementary science assessment materials can be designed productively for formative and summative purposes. The project will also result in the development of a suite of valid and reliable assessments that afford interpretations on CKT matter proficiency and can be used to monitor elementary teachers learning. An external advisory board will provide formative and summative feedback on the project's activities and progress.

Critical Issues in Mathematics Education 2017

This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. The workshop will deal with the problem of providing quality math education to all, and the barriers to doing so.

Award Number: 
1738702
Funding Period: 
Sat, 04/01/2017 to Sat, 03/31/2018
Full Description: 

This conference will continue the workshop series, Critical Issues in Mathematics Education (CIME) on teaching and learning mathematics, initiated by the Mathematical Sciences Research Institute (MSRI) in 2004. The topic for CIME 2017 will be "Observing for Access, Power, and Participation in Mathematics Classrooms as a Strategy to Improve Mathematics Teaching and Learning". The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. The workshop will deal with the problem of providing quality math education to all, and the barriers to doing so. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This work is also funded by the IUSE program which focuses on innovation in undergraduate STEM education.

The CIME workshops impact three distinct communities: research mathematicians, mathematics educators (K-16), and education researchers. Participants learn about research and development efforts that can enhance their own work and the contributions they can make to solving issues in mathematics education. Participants also connect with others concerned about those issues. Workshops are designed to recruit key individuals to the improvement of mathematics education, frame critical issues, draw attention to issues of diverse participation and success, and provide images of productive engagement for participants to draw on beyond the conference.

Project Accelerate: University-High School AP Physics Partnerships

Project Accelerate blends the supportive structures of a student's home school, a rigorous online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The project could potentially lead to the success of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

Lead Organization(s): 
Award Number: 
1720914
Funding Period: 
Tue, 08/01/2017 to Fri, 07/31/2020
Full Description: 

Project Accelerate brings AP Physics 1 and, eventually, AP Physics 2 to students attending schools that do not offer AP Physics. The project will enable 249 students (mostly under-served, i.e., economically disadvantaged, ethnic minorities and racial minorities) to enroll in AP Physics - the students would otherwise not have access. These students either prepare for the AP Physics 1 exam by completing a highly interactive, conceptually rich, rigorous online course, complete with virtual lab experiments, or participate in an accredited AP course that also includes weekly hands-on labs. In this project, the model will be tested and perfected with more students and expanded to AP Physics 2. Further, model replication will be tested at an additional site, beyond the two pilot sites. In the first pilot year in Massachusetts at Boston University, results indicated that students fully engaged in Project Accelerate are (1) at least as well prepared as peer groups in traditional classrooms to succeed on the AP Physics 1 exam and (2) more inclined to engage in additional STEM programs and to pursue STEM fields and programs than they were prior to participating. In the second year of the pilot study, Project Accelerate doubled in size and expanded in partnership with West Virginia University. From lessons learned in the pilot years, key changes are being made, which are expected to increase success. Project Accelerate provides a potential solution to a significant national problem of too few under-served young people having access to high quality physics education, often resulting in these students being ill prepared to enter STEM careers and programs in college. Project Accelerate is a scalable model to empower these students to achieve STEM success, replicable at sites across the country (not only in physics, but potentially across fourteen AP subjects). The project could potentially lead to the success of tens of thousands of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

Project Accelerate blends the supportive structures of a student's home school, a private online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The goals of the project are: 1) have an additional 249 students, over three years, complete the College Board-accredited AP Physics 1 course or the AP Physics 1 Preparatory course; 2) add an additional replication site, with a total of three universities participating by the end of the project; 3) develop formal protocols so Project Accelerate can be replicated easily and with fidelity at sites across the nation; 4) develop formal protocols so the project can be self-sustaining at a reasonable cost (about $500 per student participant); 5) build an AP Physics 2 course, giving students who come through AP Physics 1 a second year of rigorous experience to help further prepare them for college and career success; 6) create additional rich interactive content, such as simulations and video-based experiments, to add to what is already in the AP Physics 1 prep course and to build the AP Physics 2 prep course - the key is to actively engage students with the material and include scaffolding to support the targeted population; 7) carry out qualitative and quantitative education research, identifying features of the program that work for the target population, as well as identifying areas for improvement. This project will support the growing body of research on the effectiveness of online and blended (combining online and in-person components) courses, and investigate the use of such courses with under-represented high school students.

Pages

Subscribe to Post-secondary