Elementary School

Articulating a Transformative Approach for Designing Tasks that Measure Young Learners' Developing Proficiencies in Integrated Science and Literacy (Collaborative Research: Harris)

The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades.

Lead Organization(s): 
Award Number: 
1903103
Funding Period: 
Sat, 12/15/2018 to Sat, 11/30/2019
Full Description: 

SRI International, University of California-Berkeley (Lawrence Hall of Science), and WestEd will join efforts to articulate a potentially transformative approach for designing new kinds of classroom-based, three-dimensional assessment tasks that measure first graders' proficiencies in integrated science and literacy learning. The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades. Specific goals of the effort will be: (1) to iteratively develop and refine a design approach that enables assessment designers to develop Next Generation Science Standards (NGSS)-aligned tasks and rubrics that include a literacy component for the early grades; (2) to use this design approach to create two exemplar assessment tasks that are feasible for classroom use; and (3) to collect initial evidence that informs the promise of the design approach.

The work's research question will be: How can we extend current methodology to create assessments that integrate the three dimensions of the NGSS and literacy for early learners? The study will select first grade as the learning environment and two of the NGSS first grade performance expectations as the assessment targets. First grade students are typically at a critical point in developing their language and literacy proficiencies, which will allow the team to take on the challenges of variation in language and literacy skills. Correspondingly, the study will select two NGSS first grade life sciences performance expectations, because they include direct ties to literacy practices in science: (1) From Molecules to Organisms: Structures and Processes (Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive); and (2) Heredity: Inheritance and Variation of Traits (Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like their parents). The design phase of the activity will consist of an assessment of the learning context and targets of the study, and the development of an assessment framework following the National Research Center's report, "Designing Assessments for the Next Generation Science Standards" (2014), including the principled assessment evidence-centered-design methodology. Data gathering, and interpretation strategies will include Experts' Review of the design approach, a focus group of teachers (n=8), and one-on-one cognitive interviews with students (n=20), conducted by researchers, which will be recorded to determine the quality and usability of the assessments using qualitative methods. The ultimate outcome of the proposed work will be a design approach for creating assessment tasks in a principled way across science disciplines for early elementary grade students. An advisory board will provide formative assessment feedback to the research team.

Articulating a Transformative Approach for Designing Tasks that Measure Young Learners' Developing Proficiencies in Integrated Science and Literacy (Collaborative Research: Rutstein)

The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades.

Lead Organization(s): 
Award Number: 
1853923
Funding Period: 
Sat, 12/15/2018 to Sat, 11/30/2019
Full Description: 

SRI International, University of California-Berkeley (Lawrence Hall of Science), and WestEd will join efforts to articulate a potentially transformative approach for designing new kinds of classroom-based, three-dimensional assessment tasks that measure first graders' proficiencies in integrated science and literacy learning. The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades. Specific goals of the effort will be: (1) to iteratively develop and refine a design approach that enables assessment designers to develop Next Generation Science Standards (NGSS)-aligned tasks and rubrics that include a literacy component for the early grades; (2) to use this design approach to create two exemplar assessment tasks that are feasible for classroom use; and (3) to collect initial evidence that informs the promise of the design approach.

The work's research question will be: How can we extend current methodology to create assessments that integrate the three dimensions of the NGSS and literacy for early learners? The study will select first grade as the learning environment and two of the NGSS first grade performance expectations as the assessment targets. First grade students are typically at a critical point in developing their language and literacy proficiencies, which will allow the team to take on the challenges of variation in language and literacy skills. Correspondingly, the study will select two NGSS first grade life sciences performance expectations, because they include direct ties to literacy practices in science: (1) From Molecules to Organisms: Structures and Processes (Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive); and (2) Heredity: Inheritance and Variation of Traits (Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like their parents). The design phase of the activity will consist of an assessment of the learning context and targets of the study, and the development of an assessment framework following the National Research Center's report, "Designing Assessments for the Next Generation Science Standards" (2014), including the principled assessment evidence-centered-design methodology. Data gathering, and interpretation strategies will include Experts' Review of the design approach, a focus group of teachers (n=8), and one-on-one cognitive interviews with students (n=20), conducted by researchers, which will be recorded to determine the quality and usability of the assessments using qualitative methods. The ultimate outcome of the proposed work will be a design approach for creating assessment tasks in a principled way across science disciplines for early elementary grade students. An advisory board will provide formative assessment feedback to the research team.

Articulating a Transformative Approach for Designing Tasks that Measure Young Learners' Developing Proficiencies in Integrated Science and Literacy (Collaborative Research: Billman)

The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades.

Partner Organization(s): 
Award Number: 
1853951
Funding Period: 
Sat, 12/15/2018 to Sat, 11/30/2019
Full Description: 

SRI International, University of California-Berkeley (Lawrence Hall of Science), and WestEd will join efforts to articulate a potentially transformative approach for designing new kinds of classroom-based, three-dimensional assessment tasks that measure first graders' proficiencies in integrated science and literacy learning. The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades. Specific goals of the effort will be: (1) to iteratively develop and refine a design approach that enables assessment designers to develop Next Generation Science Standards (NGSS)-aligned tasks and rubrics that include a literacy component for the early grades; (2) to use this design approach to create two exemplar assessment tasks that are feasible for classroom use; and (3) to collect initial evidence that informs the promise of the design approach.

The work's research question will be: How can we extend current methodology to create assessments that integrate the three dimensions of the NGSS and literacy for early learners? The study will select first grade as the learning environment and two of the NGSS first grade performance expectations as the assessment targets. First grade students are typically at a critical point in developing their language and literacy proficiencies, which will allow the team to take on the challenges of variation in language and literacy skills. Correspondingly, the study will select two NGSS first grade life sciences performance expectations, because they include direct ties to literacy practices in science: (1) From Molecules to Organisms: Structures and Processes (Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive); and (2) Heredity: Inheritance and Variation of Traits (Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like their parents). The design phase of the activity will consist of an assessment of the learning context and targets of the study, and the development of an assessment framework following the National Research Center's report, "Designing Assessments for the Next Generation Science Standards" (2014), including the principled assessment evidence-centered-design methodology. Data gathering, and interpretation strategies will include Experts' Review of the design approach, a focus group of teachers (n=8), and one-on-one cognitive interviews with students (n=20), conducted by researchers, which will be recorded to determine the quality and usability of the assessments using qualitative methods. The ultimate outcome of the proposed work will be a design approach for creating assessment tasks in a principled way across science disciplines for early elementary grade students. An advisory board will provide formative assessment feedback to the research team.

CAREER: Cultivating Teachers' Epistemic Empathy to Promote Responsive Teaching

This CAREER award aims to study the construct of "epistemic empathy" and examine how it can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom. In the context of this project, epistemic empathy is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity aimed at the construction, communication, and critique of knowledge.

Lead Organization(s): 
Award Number: 
1844453
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

When students perceive that their sense-making resources, including their cultural, linguistic, and everyday experiences, are not relevant to their science and mathematics classrooms, they may view these fields as inaccessible to them. This in turn creates an obstacle to their engagement and active participation which becomes particularly consequential for students from traditionally underrepresented populations. This issue points at the pressing need to prepare science and mathematics teachers to open up their instruction to students’ diverse ideas and meaning-making repertoires. This CAREER award aims to address this need by studying the construct of teachers’ "epistemic empathy” which is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity—an activity aimed at the construction, communication, and critique of knowledge. Through epistemic empathy, teachers take learners' perspectives and identify with their sense-making experiences in service of fostering their inquiries. The project’s goals are to examine how epistemic empathy can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom.

The five research questions will be: (1) Do the ways in which pre-service teachers display epistemic empathy change throughout a course aimed at promoting attention to and knowledge about learners’ varied ways of knowing in science and mathematics?; (2) How do the teaching domain and teaching context influence how teachers express epistemic empathy, and the concerns and tensions they report around empathizing with learners’ thinking and emotions?; (3) How does epistemic empathy shape the ways in which teachers understand and reflect on their roles, goals, and priorities as science or mathematics teachers?; (4) How does epistemic empathy shape teachers’ responsiveness to student thinking and emotions during instruction?; and (5) How does teachers’ epistemic empathy influence how students orient and respond to each other’s thinking in science and mathematics classrooms?

To address these questions, the project will conduct a series of design-based research studies working with science and mathematics pre-service and in-service K-12 teachers (n=140) to design, implement, and analyze ways to elicit and cultivate their epistemic empathy. Further, the project will explore how epistemic empathy shapes teachers’ views of their roles, goals, and priorities as science or mathematics teachers and how it influences their enactment of responsive teaching practices. The project will also examine the influence of teachers’ epistemic empathy on student engagement, in particular in the ways students attend and respond to each other’s epistemic experiences in the classroom. Data collection will include video and audio recording of teacher education and professional development sessions; collection of teachers’ work within those sessions such as their responses to a pre- and post- video assessment task and their written analyses of different videos of student inquiry; interviews with the teachers; and videos from the teachers’ own instruction as well as teachers’ reflections on these videos in stimulated recall interviews. These data will be analyzed using both qualitative methods (i.e., discourse analysis, interaction analysis) and quantitative methods (i.e., blind coding, descriptive statistics). The project’s outcomes will be: (1) an instructional model that targets epistemic empathy as a pedagogical resource for teachers, with exemplars of activities and tasks aimed at developing teachers' attunement to and ways of leveraging learners' meaning-making repertoires (2) local theory of teachers' learning to epistemically empathize with learners in science and mathematics; and (3) empirical descriptions of how epistemic empathy functions to guide and shape teachers' responsiveness and students' engagement. An advisory board will provide feedback on the project’s progress, as well as formative and summative evaluation.

Using Technology to Capture Classroom Interactions: The Design, Validation, and Dissemination of a Formative Assessment of Instruction Tool for Diverse K-8 Mathematics Classrooms

This project will refine, expand, and validate a formative assessment tool called Math Habits Tool (MHT) for kindergarten through 8th grade classrooms. MHT is intended to capture and understand patterns of in-the-moment teacher-student and student-student classroom interactions in ways that can promote more equitable access to high quality math learning experiences for all students.

Lead Organization(s): 
Award Number: 
1814114
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 

An important aspect of mathematics teaching and learning is the provision of timely and targeted feedback to students and teachers on the teaching and learning processes. However, many of the tools and resources focused on providing such feedback (e.g., formative assessment) are aimed at helping students. However, formative assessment of teaching can be equally transformative for teachers and school leaders and is a key component of improved teacher practice. This project will refine, expand and validate a formative assessment tool called Math Habits Tool (MHT) for kindergarten through 8th grade classrooms. MHT is intended to capture and understand patterns of in-the-moment teacher-student and student-student classroom interactions in ways that can promote more equitable access to high quality math learning experiences for all students. The tablet or computer-based tool is intended for use with teacher leaders, principals, coaches, and others interested in assessing teacher practice in a formative way.

This project will continue the development of the MHT through: (1) the integration of an access component; (2) analysis of videos collected during prior studies covering a diverse set of classrooms across the K-8 spectrum; (2) a validation study using validity-argument approach; and (3) the development, piloting, and refinement of professional development modules that will guide math educators, researchers, and practitioners in using the MHT effectively as a formative assessment of instruction. The revised MHT will be validated through analyses of video data from a range of K-8 classrooms with varying demographics and contexts such as socio-economic status, language backgrounds, gender, school settings (e.g., urban, rural, suburban), and race, with particular attention to increasing accessibility to mathematics learning by students who are traditionally underserved, including emergent bilingual students. The data analysis plan involves video coding with multiple checks on reliability, dimensionality analysis with optimal scaling, correlation analysis, and hierarchical linear modeling.

Building Sustainable Networked Instructional Leadership in Elementary Mathematics Through a University Partnership with a Large Urban District

The goal of this project is to build instructional leadership capacity in teachers and school-based leaders in a network of underperforming elementary schools with limited resources. Through design-based improvement research, the project is designed to enhance the knowledge, skills, and competencies of elementary teacher leaders and principals to develop a shared vision and provide ongoing support of high-quality math instruction.

Lead Organization(s): 
Award Number: 
1813048
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Mathematics is an important discipline that provides access to students to the other STEM disciplines. Early competence with mathematics has proven to be an important predictor of later achievement in school across socioeconomic backgrounds (National Mathematics Advisory Panel, 2008). It is difficult for schools and districts to maintain a sustained focus on improving math instruction in the elementary years, particularly in low-income and underperforming contexts where these goals are often overshadowed by more pressing needs and issues. Instructional leadership development holds promise for increasing the ability of school-based leaders to understand and support evidence-base practices, improve the quality of instruction, and ultimately improve student achievement (Ingersoll, Sirinides, & Doherty, 2017). The goal of this project is to build instructional leadership capacity in teachers and school-based leaders in a network of underperforming elementary schools with limited resources. Through design-based improvement research, the project is designed to enhance the knowledge, skills, and competencies of elementary teacher leaders and principals to develop a shared vision and provide ongoing support of high-quality math instruction. During the first 3 years of this project, cohorts of 2-4 schools will be added each year for mentored mathematics lead teachers (MLTs) coaching development and strategic school-based leadership support. Each cohort will begin with a year of instructional leadership mentorship, where a university-based consultant with expertise in mathematics instruction works side-by-side with the MLT as they co-participate in coaching activities. The second year of participation will involve a launch phase where MLTs will have the opportunity for monthly check-ins with the mentor while working with more independence with a new set of focal teachers and continuing to participate in the network-wide professional development. By the third year of participation, schools will be expected to assume ownership of the instructional leadership and strategic planning efforts while continuing to participate in network-wide professional community. Concurrently, the project team will offer professional development to MLTs and school-based leaders across all 13 schools, building up an ongoing networked community with different levels of expertise. The multi-year design of the project allows for studying the development of a group of teachers as they transition from mentored novices to more experienced and independent instructional leaders over time.

Building on two years of prior work and relationship building, the project aims to build coherence from the district to school to classroom level, leveraging the resources of the university to help translate the district vision for instructional improvement into classroom practice. In particular, the project focuses on developing shared understanding of high quality math instruction at the network level, strategic planning for math instructional leadership at the school level, and mentorship for lead teachers to provide effective instructional coaching at the classroom level. Development goals include: building math leadership capacity within the network, developing and refining a set of tools and routines to support instructional improvement at the classroom, school, network, and district levels, and building a networked community of schools, teachers, and leaders. The overarching problem that this project seeks to address is: How can instructional leadership expertise be developed in newly appointed math lead teachers within a large urban school district? The project will collect data including coaching artifacts such as observation and debriefing forms; mentor logs; interviews with teachers, MLTs, principals, and university-based mentors; and video recordings of coaching cycles. The focus of the data analysis will be to determine coherence and evidence of growth at different levels of the system to continually improve the intervention through a variety of qualitative data analysis techniques.

Translating a Video-based Model of Teacher Professional Development to an Online Environment

This project will adapt an effective in-person teacher professional development model to an online approach. A defining feature of the Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development program is its use of videos of classroom instruction and examples of student work to promote teacher learning. Adapting the STeLLA program to an online learning model can reach a broader and more diverse audience, such as teachers working in rural school districts and underserved communities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813127
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Improving the quality of teaching is essential to improving student outcomes. But what are the most effective ways to support teachers' professional development?  BSCS Science Learning and the University of Minnesota STEM Education Program Area explore this question by adapting an effective teacher professional development model -- that meets face-to-face in real-time -- to an online approach. A defining feature of the Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development program is its use of videos of classroom instruction and examples of student work to promote teacher learning. Skilled facilitators guide teachers' analysis and discussion of other teachers' work; then, teachers begin to apply the analytical techniques they have learned to their own teaching. Adapting the STeLLA program to an online learning model is important because it can reach a broader and more diverse audience such as teachers working in rural school districts and underserved communities. To further promote the reach of STeLLA, the online version of STeLLA will engage and prepare teacher leaders to support their peers' engagement and understanding.

Guided by theories of situated cognition and cognitive apprenticeship this project focuses on two questions: How can the STeLLA professional development model be adapted to an online environment? and Does participation in the online model show meaningful teacher and student outcomes related to science teaching and learning? Challenges related to adaptation include understanding the duration and intensity of teacher engagement, the quality of their science content learning experiences, and how teacher learning is scaffolded across the online and traditional model. The project will unfold in two phases. Phase 1 uses a design-based research approach to rapidly enact, test, and revise online program components while remaining true to the design principles underlying the traditional STeLLA PD program. Phase 2 uses a quasi-experimental approach to test STeLLA Online's influence on teacher content knowledge, pedagogical content knowledge, practice and on upper elementary student science achievement. Comparisons will be made between STeLLA Online, face-to-face STeLLA, and a traditional professional development program that emphasizes deepening content knowledge only. This comparison leverages data from a previously-completed cluster randomized trial of STeLLA funded by the NSF.

An Integrated Approach to Early Elementary Earth and Space Science

This project will study if, how, and under what circumstances an integration of literacy strategies, hands-on inquiry-based investigations, and planetarium experiences supports the development of science practices (noticing, recognizing change, making predictions, and constructing explanations) in early elementary level students. The project will generate knowledge about how astronomy-focused storybooks, hands-on investigations, and planetarium experiences can be integrated to develop age-appropriate science practices in very young children.

Award Number: 
1813189
Funding Period: 
Sat, 09/01/2018 to Mon, 08/31/2020
Full Description: 

State science standards increasingly emphasize the importance of engaging K-12 students directly in natural phenomena and providing opportunities to construct explanations grounded in evidence. Moreover, these state science standards introduce earth and space science content in the early elementary grades. This creates a critical need for new pedagogies, materials, and resources for science teachers in all grades, but the need is particularly urgent in grades K-3 where teachers have had little preparation to teach science, let alone astronomy. There is also growing consensus that when learning opportunities in formal and informal settings are closely aligned, children's science literacy is developed in ways greater than either setting can achieve alone. The investigators will study if, how, and under what circumstances an integration of literacy strategies, hands-on inquiry-based investigations, and planetarium experiences supports the development of science practices (noticing, recognizing change, making predictions, and constructing explanations) in early elementary level students. This project will generate knowledge about how astronomy-focused storybooks, hands-on investigations, and planetarium experiences can be integrated to develop age-appropriate science practices in very young children (noticing, recognizing change, making predictions, and constructing explanations).

Emergent research on the development of children's science thinking indicates that when young children are engaged with science-focused storybooks and activities that each highlight the same phenomenon, children notice and gather evidence, make predictions and claims based on evidence, and provide explanations grounded in the experiences provided to them. This project has two phases. In Phase 1, first and third grade teachers will be recruited. They will help identify specific learner needs as these relate to the earth and space science standards in their grade band, assist in the development and pilot testing of a prototype instructional sequence and supporting activities taking place within their classrooms and at a local planetarium. In Phase 2, the revised learning sequence and research protocol will be implemented with the same teachers and a new cohort of children. The mixed method research design includes video observations, teacher interviews, and teacher and student surveys. Data analysis will focus on science practices, connections across contexts (e.g., school and planetarium), and instructional adaptations. The project involves a research-practice collaboration between the Astronomical Society of the Pacific, Rockman & Associates, the Lawrence Hall of Science at the University of California, Berkeley, and West Chester University.

Enhancing Teacher and Student Understanding of Engineering in K-5 Bilingual Programs

This mixed-method exploratory study will examine how bilingual teachers working in elementary schools in Massachusetts and Puerto Rico understand the role and skills of engineers in society. In turn, it will examine how teachers adapt existing engineering lessons so that those activities and concepts are more culturally and linguistically accessible to their students.

Lead Organization(s): 
Award Number: 
1814258
Funding Period: 
Mon, 10/01/2018 to Thu, 09/30/2021
Full Description: 

Engineering is part of everyone's local community and daily activities yet opportunities to learn about engineering are often absent from elementary school classrooms. Further, little is known about how teachers' and students' conceptions of engineering relate to aspects of their local community such as language and culture. Knowing more about this is important because students' perceptions of mismatch between their personal culture and the engineering field contributes to the continued underrepresentation of minorities in the profession. This mixed-method exploratory study will examine how bilingual teachers working in elementary schools in Massachusetts and Puerto Rico understand the role and skills of engineers in society. In turn, it will examine how teachers adapt existing engineering lessons so that those activities and concepts are more culturally and linguistically accessible to their students.

Consistent with the aims of the DRK-12 program, this project will advance understanding of how engineering education materials can be adapted to the characteristics of teachers, students, and the communities that they reside in. Further, its focus on bilingual classrooms will bring new perspectives to characterizations of the engineering field and its role in different cultures and societies. Over a three-year period, the team will investigate these issues by collecting data from 24 teachers (12 from each location). Data will be collected via surveys, interviews, discussion of instructional examples, videos of teachers' classroom instruction and analysis of artifacts such as teachers' lesson plans. Teachers will collaborate and function as a professional co-learning community called instructional rounds by participating and providing feedback synchronously in face-to-face settings and via the use of digital apps. Project findings can lead to teaching guidelines, practices, and briefs that inform efforts to successfully integrate bilingual engineering curriculum at the elementary grades. This work also has the potential to create professional development models of success for K-5 teachers in bilingual programs and enhance engineering teaching strategies and methods at these early grade levels.

Science, Technology, Engineering and Mathematics Teaching in Rural Areas Using Cultural Knowledge Systems

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

Award Number: 
1812888
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. Research activities take place in Northwest Alaska. Senior personnel will travel to rural communities to collaborate with and support participants. The visits demonstrate University of Alaska Fairbanks's commitment to support pathways toward STEM careers, community engagement in research, science teacher recruitment and preparation, and STEM career awareness for Indigenous and rural pre-college students. Pre-service teachers who access to the resources and findings from this project will be better prepared to teach STEM to Native students and other minorities and may be more willing to continue careers as science educators teaching in settings with Indigenous students. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students. The project's participants and the pre-college students they teach will be part of the pipeline into science careers for underrepresented Native students in Arctic communities. The project will build on partnerships outside of Alaska serving other Indigenous populations and will expand outreach associated with NSF's polar science investments.

CCPM will build on cultural knowledge systems and NSF polar research investments to address science themes relevant to Inupiat people, who have inhabited the region for thousands of years. An Inupiaq scholar will conduct project research and guide collaboration between Indigenous participants and science researchers using the Inupiaq research methodology known as Katimarugut (meaning "we are meeting"). The project research and development will engage 450 students in grades 6-8 and serves 450 students (92% Indigenous) and 11 teachers in the remote Arctic. There are two broad research hypotheses. The first is that the project will build knowledge concerning STEM research practices by accessing STEM understandings and methodologies embedded in Indigenous knowledge systems; engaging Indigenous communities in project development of curricular resources; and bringing Arctic science research aligned with Indigenous priorities into underserved classrooms. The second is that classroom implementation of resources developed using the CCPM will improve student attitudes toward and engagement with STEM and increase their understandings of place-based science concepts. Findings from development and testing will form the basis for further development, broader implementation and deeper research to inform policy and practice on STEM education for underrepresented minorities and on rural education.

Pages

Subscribe to Elementary School