Student Attitudes/Beliefs

The Developmental Emergence and Consequences of Spatial and Math Gender Stereotypes

This project will investigate the development and emergence of spatial gender stereotypes (and their relation to math gender stereotypes) in elementary school-aged children and their impact on parent-child interactions in the pre-school period.

Lead Organization(s): 
Award Number: 
1920732
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

There is currently a gender gap in STEM fields, such that females participate at lower rates and have lower career attainment than their male counterparts. While much research has focused on gender differences in math attitudes, little work has explored how attitudes in a closely related STEM domain, spatial reasoning, may also contribute to the observed gender gap. The proposed research will characterize the acquisition of gender stereotypes in childhood in two key domains critical to success and participation in STEM fields: math and spatial skills. Recent evidence suggests that children acquire math gender stereotypes (i.e., the belief that "math is for boys") as early as 1st - 2nd grades, but less is known about children's attitudes about spatial abilities. This project will be one of the first to investigate the development and emergence of spatial gender stereotypes (and their relation to math gender stereotypes) in elementary school-aged children, and their impact on parent-child interactions in the pre-school period.

Eight behavioral studies involving 1290 children (Pre-K - 4th graders), 240 caregivers, and 180 adults will participate in studies that evaluate an integrated theoretical model of the relations between gender, gender stereotypes, attitudes, and abilities in the domains of math and space. In Series 1, studies will characterize the emergence of and assumptions behind spatial- and math- gender stereotypes in 1st - 4th graders, while determining how they may be acquired. In Series 2, studies will explore the real-world impacts of spatial-gender stereotypes on STEM participation and achievement in childhood. Lastly, Series 3 studies will explore the malleability of these stereotypes in the hopes of identifying ways to ameliorate their impact early in development. The project will provide training for doctoral graduate and undergraduate students. Moreover, this project will support new and ongoing collaborations with local children's museums, which facilitate interactions and communication with families, educators, and the public about the research findings. By being some of the first work to uncover the developmental origins and consequences of math and spatial stereotypes, this work may inform possible future interventions to reduce and/or eliminate the perpetuation of these stereotypes in children, long before they can have greater lifelong impacts.

Crowdsourcing Neuroscience: An Interactive Cloud-based Citizen Science Platform for High School Students, Teachers, and Researchers

This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.

Lead Organization(s): 
Award Number: 
1908482
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include engaging students in the practices of science as well as the ideas of science. This project will address this priority by developing a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms. Before students and teachers initiate their own studies using the system, they will participate in existing research studies by contributing their own data and collaborating with researchers using the online, interactive system. When experienced with the system, students and teachers will become researchers by developing independent investigations and uploading them to the interactive platform. Both student-initiated and scientist-initiated proposals will be submitted to the platform, peer-reviewed by students and scientists, revised, and included in the online experimental bank. In addition to conducting their own studies using the platform, scientists will act as educators and mentors by populating the experiment bank with studies that can serve as models for students and provide science content for the educational resource center. This online system addresses a critical need in science education to involve students more fully and authentically in scientific inquiry where they gain experience in exploring the unknown rather than confirming what is already known.

This early stage design and development study is guided by three goals: 1) Develop an open-science citizen science platform for conducting human brain and behavior research in the classroom, 2) Develop a remote neuroscience Student-Teacher-Scientists (STS) partnership program for high schools, and 3) Evaluate the design, development, and implementation of the program and its impacts on students and tachers. In developing this project, the project team will link two quickly emerging trends, one in science education, and one in the sciences. Consistent with current priorities in science education, the project will engage students and their teachers in authentic, active inquiry where they learn scientific practices by using them to conduct authentic inquiry where a search for knowledge is grounded in finding evidence-based answers to original questions. On the science side, students and their science partners will participate in an open science approach by pre-registering their research and committing to an analysis plan before data are collected. In this project, students will primarily be using reaction time and online systems to do research that includes study of their own brain function. The project research is guided by three research questions. How does an online citizen neuroscience STS platform: a) impact students' understanding of, and abilities to apply neuroscience and experimental design concepts? b) Impact students' interests in, and attitudes toward science, including an awareness of science careers and applications? and c) Affect teachers' attitudes towards neuroscience teaching, and the use of inquiry-based strategies? A design-based research approach will be used to iteratively design a sustainable and scalable inquiry-based neuroscience curriculum with teachers as design partners.

Supporting Students' Science Content Knowledge through Project-based Inquiry

This project will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities.

Award Number: 
1907895
Funding Period: 
Thu, 08/01/2019 to Sat, 07/31/2021
Full Description: 

The Project-Based Inquiry (PBI) Global initiative will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. Both are innovative public high schools implementing the Early College High School model, preparing diverse students from populations underrepresented in STEM fields for college success. Because of the synergistic interaction of theory and practice, the project will produce substantial advances in the development of improved inquiry-based learning materials and research on the impact of these materials on students and teachers. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities. The following three research questions will be addressed: 1) How does inquiry through the PBI Global process support student science content knowledge? 2) How can students' motivation and engagement be characterized after participating in the PBI Global process? 3) To what degree do teachers' attitudes toward inquiry-based pedagogies change as a result of PBI Global professional development?

Project-Based Inquiry (PBI) Global responds to the need for research-informed and field-tested products with iterative development and implementation of a globally relevant, inquiry-based STEM curriculum. The project focuses on developing 9th grade student physical, biological, and environmental science content knowledge and science and engineering practices through the topics of global water and sanitation issues. Factors influencing student motivation and engagement, as well as teacher attitudes toward inquiry-based pedagogies will be investigated. The project will use a Design-Based Research (DBR) approach to develop and refine instructional materials and teacher professional development for the existing interdisciplinary PBI Global initiative. A mixed-methods research convergent parallel design will be used to explore the effects of the classroom implementation on student and teacher outcomes.

Validity Evidence for Measurement in Mathematics Education (V-M2ED) (Collaborative Research: Bostic)

The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1920621
Funding Period: 
Thu, 08/01/2019 to Wed, 07/31/2024
Full Description: 

As education has shifted more towards data-driven policy and research initiatives in the last several decades, data for policy-related aspects are often expected to be more quantitative in nature.  This has led to the increase in use of more quantitative measures in STEM education, including mathematics education. Unfortunately, evidence regarding the validity and reliability of mathematics education measures is lacking. Furthermore, the evidence for validity for quantitative tools and measures is not conceptualized or defined consistently by researchers in the field. The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education. Drawing on the results of the synthesis study, the researchers will design, curate, and disseminate a repository of quantitative assessments used in mathematics education teaching and research. The researchers will also create materials and online training for a variety of scholars and practitioners to use the repository.

The team will address two main research questions: 1) How might validity evidence related to quantitative assessments used in mathematics education research be categorized and described? and 2) What validity evidence exists for quantitative instruments used in mathematics education scholarship since 2000? Researchers will use a cross-comparative methodology which involves conducting a literature search and then analyzing and categorizing features of instruments. The research team will examine cases (i.e., assessments described in manuscripts) in which quantitative instruments have been used, alongside specific features such as the construct measured, evidence related to sources of validity, and study sample. The team will then design, develop, and deploy a free online digital repository for the categorization of instruments and describe their associated validity evidence.

Developing and Investigating Unscripted Mathematics Videos

This project will use an alternative model for online videos to develop video units that feature the unscripted dialogue of pairs of students. The project team will create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level.

Lead Organization(s): 
Award Number: 
1907782
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

This project responds to the recent internet phenomenon of widespread accessibility to online instructional videos, which offer many benefits, such as student control of the pace of learning. However, these videos primarily focus on a single speaker working through procedural problems and providing an explanation. While the immense reach of free online instructional videos is potentially transformative, this potential can only be attained if access transcends physical availability to also include entry into important disciplinary understandings and practices, and only if the instructional method pushes past what would be considered outdated pedagogy in any other setting than a digital one. This project will use an alternative model for online videos, originally developed for a previous exploratory project, to develop 6 video units that feature the unscripted dialogue of pairs of students. The project team will use the filming and post-production processes established during the previous grant to create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level. They will also conduct 8 research studies to investigate the promise of these unscripted dialogic videos with a diverse population to better understand the vicarious learning process, which refers to learning from video- or audio-taped presentations of other people learning. Additionally, the project team will provide broader access to the project videos and support a variety of users, by: (a) subtitling the videos and checking math task statements for linguistic accessibility; (b) representing diversity of race, ethnicity, and language in both the pool of students who appear in the videos and the research study participants; (c) providing teachers with an array of resources including focus questions to pose in class with each video, printable task worksheets, specific ways to support dialogue about the videos, and alignment of the video content with Common Core mathematics standards and practices; and (d) modernizing the project website and making it functional across a variety of platforms.

The videos created for this project will feature pairs of students (called the talent), highlighting their unscripted dialogue, authentic confusion, and conceptual resources. Each video unit will consist of 7 video lessons (each split into 4-5 short video episodes) meant to be viewed in succession to support conceptual development over time. The project will build upon emerging evidence from the exploratory grant that as students engage with videos that feature peers grappling with complex mathematics, they can enter a quasi-collaborative relationship with the on-screen talent to learn complex conceptual content and engage in authentic mathematical practices. The research focuses on the questions: 1. What can diverse populations of vicarious learners learn mathematically from dialogic videos, and how do the vicarious learners orient to the talent in the videos? 2. What is the nature of vicarious learners' evolving ways of reasoning as they engage with multiple dialogic video lessons over time and what processes are involved in vicarious learning? and, 3. What instructional practices encourage a classroom community to adopt productive ways of reasoning from dialogic videos? To address the first question, the project team will conduct two Learning Outcomes and Orientation Studies, in which they analyze students' learning outcomes and survey responses after they have learned from one of the video units in a classroom setting. Before administering an assessment to a classroom of students, they will first conduct an exploratory Interpretation Study for each unit, in which they link the mathematical interpretations that VLs generate from viewing the project videos with their performance on an assessment instrument. Both types of studies will be conducted twice, once for each of two video units - Exponential Functions and Meaning and Use of Algebraic Symbols. For the second research question, the project team will identify a learning trajectory associated with each of four video units. These two learning trajectories will inform the instructional planning for the classroom studies by identifying what meaningful appropriation can occur, as well as conceptual challenges for VLs. By delivering learning trajectories for two additional units, the project can contribute to vicarious learning theory by identifying commonalities in learning processes evident across the four studies. For the final research question, the project team will investigate how instructors can support students with the instrumental genesis process, which occurs through a process called instrumental orchestration, as they teach the two videos on exponential functions and algebraic symbols.

Developing the Science Comprehensive Online Learning Platform for Rural School Science Teacher Development

This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS).

Lead Organization(s): 
Award Number: 
1908937
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

Rural school districts in the US face unique challenges: isolation in small farm communities, significant distances between communities, minimal funding, and low teacher salaries. They also serve high numbers of diverse and low-income students, who deserve equitable access to high quality science learning opportunities. Effective online professional development (PD) is needed for teachers working in isolated rural communities where high quality face-to-face PD may be economically impractical for districts to offer. This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS). The online learning platform will be modeled after successful face-to-face PD features: (1) job-embedded - learning occurs within the context of teachers' classroom instruction, (2) collaborative - teachers share experiences in implementing new practices, and (3) content-specific - teachers develop disciplinary content and instructional practices that support students' understanding of science. Once developed and refined, the online PD platform can be used broadly across other contexts and content areas.

Over a three year period, this project will develop, evaluate, and then compare an online PD platform for supporting rural science teachers in implementing the Towards High School Biology (THSB) curriculum with a traditional face-to-face PD. In year one, the research team will iteratively develop the online platform and adapt the already developed face-to-face PD for implementing THSB to an online format. Utilizing Curator, a social learning platform developed by HT2Labs, project researchers will embed teacher learning that is situated with their own classroom contexts, is asynchronously and synchronously collaborative, and is focused on the THSB curriculum content. In years two and three, forty eight rural middle-school science educators will be recruited from southwest Kansas and randomly assigned to online PD (treatment) or face-to-face PD (comparison). Using mixed methodology, the project will examine if differences exist between the conditions in regards to teacher content knowledge, teacher self-efficacy in using new practices, teacher classroom practices, and student learning outcomes. It is hypothesized that there should be no differences between conditions in fostering successful implementation of evidence-based science practices and student outcomes, demonstrating the success of an online modality to support deep conceptual change in teachers' instructional practices. Furthermore, lessons learned in developing and investigating a science comprehensive online learning platform can inform application to other disciplinary content (e.g., physics, chemistry, Earth and space sciences) and across other grade level and school contexts.

 

Getting Unstuck: Designing and Evaluating Teacher Resources to Support Conceptual and Creative Fluency with Programming

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.

Lead Organization(s): 
Award Number: 
1908110
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming. K-12 introductory programming experiences are often highly scaffolded, and it can be challenging for students to transition from constrained exercises to open-ended programming activities encountered later in-and out of-school. Teachers can provide critical support to help students solve problems and develop the cognitive, social, and emotional capacities required for conceptually and creatively complex programming challenges. Teachers - particularly elementary and middle school teachers, especially in rural and Title I schools - often lack the programming content knowledge, skills, and practices needed to support deeper and more meaningful programming experiences for students. Professional development opportunities can cultivate teacher expertise, especially when supported by curricular materials that bridge teachers' professional learning and students' classroom learning. This research responds to these needs, addressing key national priorities for increasing access to high-quality K-12 computer science education for all students through teacher professional development.

The project will involve the design and evaluation of (1) an online learning experience for teachers to develop conceptual and creative fluency through short, daily programming prompts (featuring the Scratch programming environment), and (2) educative curricular materials for the classroom (based on the online experience). The online experience and curricular materials will be developed in collaboration with three 4th through 6th-grade rural or Title I teachers. The project will evaluate teacher learning in the online experience using mixed-methods analyses of pre/post-survey data of teachers' perceived expertise and quantitative analyses of teachers' programs and evolving conceptual knowledge. Three additional 4th through 6th-grade teachers will pilot the curricular materials in their classrooms. The six pilot teachers will maintain field journals about their experiences and will participate in interviews, evaluating use of the resources in practice. An ethnography of one teacher's classroom will be developed to further contribute to understandings of the classroom-level resources in action, including students' experiences and learning. Student learning will be evaluated through student interviews and analyses of student projects. Project outcomes will inform how computer science conceptual knowledge and creative fluency can be developed both for teachers and their students' knowledge and fluency that will be critical for students' future success in work and life.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Matuk)

This project aims to enact and study the co-design of classroom activities by mathematics and visual arts teachers to promote middle school students' data literacy.

Lead Organization(s): 
Award Number: 
1908557
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Vacca)

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

Lead Organization(s): 
Award Number: 
1908142
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Silander)

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

Award Number: 
1908030
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Pages

Subscribe to Student Attitudes/Beliefs