Achievement/Growth

CAREER: Exploring Beginning Mathematics Teachers' Career Patterns

Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1506494
Funding Period: 
Fri, 08/15/2014 to Fri, 07/31/2020
Full Description: 

Recruiting and retaining effective mathematics teachers has been emphasized in national reports as a top priority in educational policy initiatives. Research indicates that the average turnover rate is nearly 23% for beginning teachers (compared to 15% for veteran instructors); turnover rates for beginning mathematics teachers are even higher. Many mathematics teachers with three or fewer years' experience begin their careers in high-needs schools and often transfer to low-need schools at their first opportunity. This reshuffling, as effective teachers move from high- to low-need schools, exacerbates the unequal distribution of teacher quality, with important implications for disparities in student achievement. Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. Thus, it is essential to understand the features, practices, and local contexts that are relevant to beginning teachers' career decisions in order to identify relevant strategies for retention. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce. This support for an early CAREER scholar in mathematics policy will enhance capacity to address issues in the future.

This work will be guided by three research objectives, to: (1) explore patterns in mathematics teachers' career movements, comparing patterns between elementary and middle school teachers, and between high- and low-need schools; (2) compare qualifications and effectiveness of teachers on different career paths (e.g., movement in/out of school, district, field); and (3) test a conceptual model of how policy-malleable factors influence beginning math teachers' performance improvement and career movements. The PI will use large-scale federal and state longitudinal data on a cohort of teachers who were first-year teachers in 2007-08 and taught mathematics in grades 3-8. Three samples will be analyzed separately and then collectively: a nationally representative sample from the Beginning Teacher Longitudinal Study (about 870 teachers who represent a national population of nearly 85,970); about 4,220 Florida teachers; and about 2,410 North Carolina teachers. In addition, the PI will collaborate with Education Policy Initiative at Carolina (EPIC) at UNC-Chapel Hill to collect new data from the 2015-16 cohort of first-year teachers in NC (about 800 teachers) and follow them for 2 years. The new data collection will provide detailed and reliable measures on the quality of both pre- and in-service teacher supports in order to understand how they may be linked to teachers' career movements and performance.

The original award # of this project was 1350158.

CAREER: L-MAP: Pre-service Middle School Teachers' Knowledge of Mathematical Argumentation and Proving

This program of research will examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program?

Lead Organization(s): 
Award Number: 
1350802
Funding Period: 
Tue, 07/15/2014 to Tue, 06/30/2020
Full Description: 

The field of mathematics teacher education needs a strong understanding of pre-service teachers' knowledge about the practice of mathematical argumentation and proof, including the development of this knowledge, to effectively move pre-service teachers toward a more sophisticated understanding and enactment of this practice with their own students. The integrated research and educational activities will contribute to the knowledge base teacher education programs need to effectively prepare middle school teachers for meeting the challenges of how to make reasoning and proof an integral aspect of instructional practice. The research results have the potential to guide teacher educators and educational researchers concerned with strengthening pre-service teachers' ability to make reasoning and proving an integral aspect of school mathematics. Consequently, pre-service teachers will be better equipped to develop mathematical reasoning skills in their future students and to support their students in learning mathematics with understanding. Given this country's growing need for a competent STEM workforce, helping all students learn mathematics in a way that supports deeper understanding is a priority. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

The objective of this program of research is to examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program? This development will be studied along three dimensions: (a) pre-service teachers' own ability to formulate mathematical arguments, (b) their ability to analyze mathematical arguments, and (c) their ability to analyze situations that engage students in mathematical argumentation and proving. Cross-sectional and longitudinal studies of 60 pre-service teachers' models, or systems of interpretation, of mathematical argumentation and proof in curricular context that foster reasoning about change, proportionality and proportional relationships will be conducted to provide an understanding of the trajectory that captures how pre-service teachers develop their knowledge of mathematical argumentation and proving throughout their university mathematics preparation program and into their student teaching.

CAREER: Leveraging Contrasting Cases to Investigate Integer Understanding

Most students learn about negative numbers long after they have learned about positive numbers, and they have little time or opportunity to build on their prior understanding by contrasting the two concepts. The purpose of this CAREER project is to identify language factors and instructional sequences that contribute to improving elementary students' understanding of addition and subtraction problems involving negative integers. 

Lead Organization(s): 
Award Number: 
1350281
Funding Period: 
Thu, 05/15/2014 to Fri, 04/30/2021
Full Description: 

Currently, most students learn about negative numbers long after they have learned about positive numbers, and they have little time or opportunity to build on their prior understanding by contrasting the two concepts. Therefore, they struggle to make sense of negative integer concepts, which appear to conflict with their current understanding. The purpose of this CAREER project is to identify language factors and instructional sequences that contribute to improving elementary students' understanding of addition and subtraction problems involving negative integers. A second objective is to identify how elementary teachers interpret their students' integer understanding and use research findings to support their teaching of these concepts. This project is expected to contribute to theories regarding the development of integer understanding as well as what makes a useful contrasting case when learning new, related concepts. Moreover, the results of this project can contribute to our understanding of how to build on students? prior number knowledge rather than contradict it.

The principal investigator will conduct a series of four experimental studies involving a preparation for learning component with students randomly assigned to treatment or control groups. Study 1 will involve second and fourth graders and will test the language factors that support students' understanding of integers. Studies 2-4 will involve second and fifth graders and will test the optimal order in which integer addition and subtraction problems are presented in contrast with each other versus sequentially without contrasts. Using items that measure students? understanding of integers and integer operations, the PI will compare students' gains from pre-tests to post-tests between groups. Further, the investigator will qualitatively code students? solution strategies based on follow-up interviews and written work for additional information on the differences between groups. Following the experimental studies, the PI will work with elementary teachers over three lesson study cycles, during which teachers will implement instruction based on the prior studies? results. The PI will compare the performance of students who participate in the lesson study unit versus control classrooms to measure impact of the unit.

Videos of the lesson study unit, as well as the negative integer lesson plans will be made available for other teachers and teacher educators to use. Further, the investigator will incorporate the research results into an undergraduate mathematics methods course. To ensure that the results of this research reach a wider audience, the investigator will create an integer game and storybook, illustrating key concepts identified through the research, that parents can explore together with their children during family math nights and at home. On a broader scale, this project has the potential to illuminate ways to develop more coherence in the sequencing of mathematics topics to more effectively build on students? current understanding.

CAREER: Algebraic Knowledge for Teaching: A Cross-Cultural Perspective

The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. This study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance.

Lead Organization(s): 
Award Number: 
1350068
Funding Period: 
Fri, 08/15/2014 to Fri, 07/31/2020
Full Description: 

What content knowledge is needed for the teaching of mathematics? What practices are more effective for realizing student success? These questions have received considerable attention in the mathematics education community. The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. Focusing on two fundamental mathematical ideas recently emphasized by the Common Core State Standards - inverse relations and properties of operations - this study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance. It will be focused on three objectives: (1) identify AKT that facilitates algebraic thinking and develop preliminary findings into teaching materials; (2) refine research-based teaching materials based on the evaluative data; and (3) integrate research with education through course development at Temple University and teacher outreach in Philadelphia.

The model underlying this research program is that improved pedagogy will improve student learning, both directly and indirectly. A design-based research method will be used to accomplish objectives #1 and #2. Cross-cultural videotaped lessons will be first analyzed to identify AKT, focusing on teachers' use of worked examples, representations, and deep questions. This initial set of findings will then be developed into teaching materials. The U.S. and Chinese expert teachers will re-teach the lessons as part of the refinement process. Data sources will include: baseline and updated survey data (control, context, and process variables), observation, documents, videos, and interviews. The statistical techniques will include descriptive and inferential statistics and HLM will to address the hierarchical nature of the data.

This project involves students and teachers at various levels (elementary, undergraduate, and graduate) at Temple University and the School District of Philadelphia (SDP) in the U.S. and Nanjing Normal University and Nantong School District in China. A total of 600 current and future elementary teachers and many of their students will benefit directly or indirectly from this project. Project findings will be disseminated through various venues. Activities of the project will promote school district-university collaboration, a novice-expert teacher network, and cross-disciplinary and international collaboration. It is anticipated that the videos of expert teaching will also be useful future research by cognitive researchers studying ways to improve mathematics learning.

Publications
G indicates graduate student author; U indicates undergraduate student author

Journal Articles in English

  1. Ding, M., G Chen, W., & G Hassler, R. (2019). Linear quantity models in the US and Chinese elementary mathematics classrooms. Mathematical Thinking and Learning, 21, 105-130 doi: 10.1080/10986065.2019.1570834 . PDF
  2. Barnett, E., & Ding, M. (2019). Teaching of the associative property: A natural classroom investigation. Investigations of Mathematics Learning, 11, 148-166. doi: 10.1080/19477503.2018.1425592  PDF
  3. Ding, M., & G Heffernan, K. (2018). Transferring specialized content knowledge to elementary classrooms: Preservice teachers’ learning to teach the associative property. International Journal of Mathematics Educational in Science and Technology, 49, 899-921.doi: 10.1080/0020739X.2018.1426793 PDF
  4. Ding, M. (2018). Modeling with tape diagrams. Teaching Children Mathematics25, 158-165. doi: 10.5951/teacchilmath.25.3.0158  PDF
  5. G Chen, W., & Ding, M.* (2018). Transitioning from mathematics textbook to classroom instruction: The case of a Chinese expert teacher. Frontiers of Education in China, 13, 601-632. doi: 10.1007/s11516-018-0031-z (*Both authors contributed equally). PDF
  6. Ding, M., & G Auxter, A. (2017). Children’s strategies to solving additive inverse problems: A preliminary analysis. Mathematics Education Research Journal, 29, 73-92. doi:10.1007/s13394-017-0188-4  PDF
  7. Ding, M. (2016).  Developing preservice elementary teachers’ specialized content knowledge for teaching fundamental mathematical ideas: The case of associative property. International Journal of STEM Education, 3(9), 1-19doi: 10.1186/s40594-016-0041-4  PDF
  8. Ding, M. (2016). Opportunities to learn: Inverse operations in U.S. and Chinese elementary mathematics textbooks. Mathematical Thinking and Learning, 18, 45-68. doi: 10.1080/10986065.2016.1107819  PDF

Journal Articles in Chinese
Note: The Chinese journals Educational Research and Evaluation (Elementary Education and Instruction教育研究与评论 (小学教育教学) and Curriculum and Instructional Methods (课程教材教法) are both official, core journals in mathematics education field in China.

  1. Chen, W. (2018). Strategies to deal with mathematical representations – an analysis of expert’s classroom instruction. Curriculum and Instructional Methods. 数学教学的表征处理策略——基于专家教师的课堂教学分析. 课程教材教法. PDF
  2. Ma, F. ( 2018) – Necessary algebraic knowledge for elementary teachers- an ongoing cross-cultural study. Educational Research and Evaluation (Elementary Education and Instruction), 2, 5-7.  小学教师必备的代数学科知识-跨文化研究进行时。教育研究与评论 (小学教育教学), 2, 5-7. PDF
  3. Chen, J. (2018) Infusion and development of children’s early algebraic thinking – a comparative study of the US and Chinese elementary mathematics teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 8-13.  儿童早期代数思维的渗透与培养-中美小学数学教学比较研究。教育研究与评论(小学教育教学),28-13.  PDF
  4. Zong, L. (2018). A comparative study on the infusion of inverse relations in the US and Chinese classroom teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 14-19.  中美逆运算渗透教学对比研究。教育研究与评论(小学教育教学,2,14-19.  PDF
  5. Wu, X. (2018). Mathematical representations and development of children’s mathematical thinking: A perspective of US-Chinese comparison. Educational Research and Evaluation (Elementary Education and Instruction), 2, 20-24.  数学表征与儿童数学思维发展-基于中美比较视角。教育研究与评论(小学教育教学,2, 20-24.  PDF

Dissertations

  1. Hassler, R. (2016). Mathematical comprehension facilitated by situation models: Learning opportunities for inverse relations in elementary school.Published dissertation, Temple University, Philadelphia, PA. (Chair: Dr. Meixia Ding)  PDF
  2. Chen, W. (2018). Elementary mathematics teachers’ professional growth: A perspectives of TPACK (TPACK 视角下小学数学教师专业发展的研究). Dissertation, Nanjing Normal University. Nanjing, China. PDF

National Presentations
G indicates graduate student author; U indicates undergraduate student author

  • Ding, M (symposium organizer, 2019, April). Enhancing elementary mathematics instruction: A U.S.-China collaboration. Papers presented at NCTM research conference (Discussant: Jinfa Cai). (The following three action research papers were written by my NSF project teachers under my guidance).
      • Milewski Moskal, M., & Varano, A. (2019). The teaching of worked examples: Chinese approaches in U.S. classrooms. Paper 
      • Larese, T., Milewski Moskal, M., Ottinger, M., & Varano, A., (2019). Introducing Investigations math games in China: Successes and surprises. Paper
      • Murray, D., Seidman, J., Blackmon, E., Maimon, G., & Domsky, A. (2019). Mathematic instruction across two cultures: A teacher perspective. Paper
    • Ding, M., & Ying Y. (2018, June). CAREER: Algebraic knowledge for teaching: A cross-cultural perspective. Poster presentation at the National Science Foundation (NSF) PI meeting, Washington, DC.  Poster
    • Ding, M., Brynes, J., G Barnett, E., & Hassler, R. (2018, April). When classroom instruction predicts students’ learning of early algebra: A cross-cultural opportunity-propensity analysis. Paper presented at 2018 AERA conference. New York, NY.  Paper
    • Ding, M., Li, X., Manfredonia, M., & Luo, W. (2018, April). Video as a tool to support teacher learning: A Cross-cultural analysis. Paper presented at 2018 NCTM conference. Washington, DC.  PPT
    • GBarnett, E., & Ding, M. (2018, April). Teaching the basic properties of arithmetic: A natural classroom investigation of associativity. Poster presentation at 2018AERA conference, New York, NY.  Poster
    • Hassler, R., & Ding, M. (2018, April). The role of deep questions in promoting elementary students’ mathematical comprehension. Poster presentation at 2018AERA conference, New York, NY.
    • Ding, M., G Chen, W., G Hassler, R., Li, X., & G Barnett, E. (April, 2017). Comparisons in the US and Chinese elementary mathematics classrooms. Poster presentation at AERA 2017 conference (In the session of “Advancing Mathematics Education Through NSF’s DRK-12 Program”). San Antonio, TX. Poster
    • Ding, M., Li, X., G Hassler, R., & G Barnett, E. (April, 2017). Understanding the basic properties of operations in US and Chinese elementary School. Paper presented at AERA 2017 conference. San Antonio, TX.  Paper
    • Ding, M., G Chen, W., & G Hassler, R. (April, 2017). Tape diagrams in the US and Chinese elementary mathematics classrooms. Paper presented at NCTM 2017 conference. San Antonio, TX.  Paper
    • Ding, M., & G Hassler, R. (2016, June). CAREER: Algebraic knowledge for teaching in elementary school: A cross-cultural perspective. Poster presentation at the NSF PI meeting, Washington, DC. Poster
    • Ding, M. (symposium organizer, 2016, April). Early algebraic in elementary school: A cross-cultural perspective. Proposals presented at 2016 AERA conference, Washington, DC.
        • Ding, M. (2016, April). A comparative analysis of inverse operations in U.S. and Chinese elementary mathematics textbooks. Paper 
        • G Hassler, R. (2016, April). Elementary Textbooks to Classroom Teaching: A Situation Model Perspective. Paper
        • G Chen, W., & Ding, M. (2016, April). Transitioning textbooks into classroom teaching: An action research on Chinese elementary mathematics lessons. Paper
        • Li, X., G Hassler, R., & Ding, M. (2016, April). Elementary students’ understanding of inverse relations in the U.S. and China.  Paper
        • Stull, J., Ding, M., G Hassler, R., Li, X., & U George, C. (2016, April). The impact of algebraic knowledge for teaching on student learning: A Preliminary analysis. Paper
      • Ding, M., G Hassler, R., Li., X., & G Chen, W. (2016, April). Algebraic knowledge for teaching: An analysis of US experts' lessons on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA. Paper
      • G Hassler. R., & Ding, M. (2016, April). Situation model perspective on mathematics classroom teaching: A case study on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA.  Paper
      • Ding, M., & G Copeland, K. (2015, April). Transforming specialized content knowledge: Preservice elementary teachers’ learning to teach the associative property of multiplication. Paper presented at AERA 2015 conference, Chicago, IL. Paper PPT
      • Ding, M., & G Auxter, A. (2015, April). Children’s strategies to solving additive inverse problems: A preliminary analysis. Paper presented at AERA 2015 conference, Chicago, IL.  Paper

      Learning about Ecosystems Science and Complex Causality through Experimentation in a Virtual World

      This project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, and will develop ways for students to conduct experiments within the virtual world and to see the results of those experiments.

      Project Email: 
      Lead Organization(s): 
      Award Number: 
      1416781
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      EcoXPT from videohall.com on Vimeo.

      Comprehending how ecosystems function is important knowledge for citizens in making decisions and for students who aspire to become scientists. This understanding requires deep thinking about complex causality, unintended side-effects, and the strengths and limitations of experimental science. These are difficult concepts to learn due to the many interacting components and non-linear interrelationships involved. Ecosystems dynamics is particularly difficult to teach in classrooms because ecosystems involve complexities such as phenomena distributed widely across space that change over long time frames. Learning when and how experimental science can provide useful information in understanding ecosystems dynamics requires moving beyond the limited affordances of classrooms. The project will: 1) advance understanding of experimentation in ecosystems as it can be applied to education; 2) show how student learning is affected by having opportunities to experiment in the virtual world that simulate what scientists do in the real world and with models; and 3) produce results comparing this form of teaching to earlier instructional approaches. This project will result in a learning environment that will support learning about the complexities of the earth's ecosystem.

      The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, developed as part of an earlier NSF-funded project. A MUVE is a simulated world in which students can virtually walk around, make observations, talk to others, and collect data. EcoMUVE simulates a pond and a forest ecosystem. It offers an immersive context that makes it possible to teach about ecosystems in the classroom, allowing exploration of the complexities of large scale problems, extended time frames and and multiple causality. To more fully understand how ecosystems work, students need the opportunity to experiment and to observe what happens. This project will advance this earlier work by developing ways for students to conduct experiments within the virtual world and to see the results of those experiments. The project will work with ecosystem scientists to study the types of experiments that they conduct, informing knowledge in education about how ecosystem scientists think, and will build opportunities for students that mirror what scientists do. The project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The resulting program will be tested against existing practice, the EcoMUVE program alone, and other programs that teach aspects of ecosystems dynamics to help teachers know how to best use these curricula in the classroom.

      Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Kerlin)

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

      Lead Organization(s): 
      Award Number: 
      1418133
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Project Evaluator: 
      Education Design
      Full Description: 

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

      The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

      Taking Games to School: Exploratory Study to Support Game-based Teaching and Learning In High-School Science Classes

      This project is building a set of software tools, including a tool for annotating screen recordings of activities in games, a teacher data dashboard for information about students' in-game learning, and tools to help teachers customize activities in games to better align with curricular standards. The project will find out whether these new tools can enhance teaching and/or learning. 

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1415284
      Funding Period: 
      Tue, 07/15/2014 to Sat, 06/30/2018
      Full Description: 

      Research shows that educational games can enhance students' science learning, but current work leaves teachers dependent on researchers and games companies to provide good games and game-based curricula. This project aims to study how teachers can be involved in making science learning games more effective, and how educational science games can better support good teaching. This project is building a set of software tools, including a tool for annotating screen recordings of activities in games, a teacher data dashboard for information about students' in-game learning, and tools to help teachers customize activities in games to better align with curricular standards. It will conduct studies with successful research-based educational games for learning science, and popularly available educational games from websites such as BrainPop, in a network of teachers who have experience using 'canned' games in their classrooms. The project will find out whether these new tools can enhance teaching and/or learning. It will also help develop a list of the types of customization options teachers need in order to be able to effectively use educational games in their classrooms. If successful, this research could point the way towards new tools that let teachers create activities that turn any game into an educational game, and to better use existing educational games in their classrooms. This could greatly speed up our ability to deliver high-quality learning experiences through educational games.

      This project involves a participatory design process in which a small number of experienced teachers will feed into a principled, iterative refinement of prototypes of the tools (annotation, data dashboard, and level-builder) to be prototyped within the Brainplay suite. In the beta testing phase, a hierarchical linear model analysis will be conducted on both student and teacher outcomes in 25 classrooms. In addition to the quantitative analysis, qualitative studies involving classroom observations, focus groups, and teacher journaling will be conducted to examine impact on teaching practices and refine the functional specifications. Project dissemination will take place through the community around the previously-developed Leveling Up games (played around 10,000 times per week), and through existing professional networks such as Edmodo. The project will also work within the games community to help inform possible approaches to logging learning data and allowing teacher customization across all games.

      Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

      SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1417040
      Funding Period: 
      Tue, 07/01/2014 to Sat, 06/30/2018
      Full Description: 

      The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

      SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

      Supporting Secondary Students in Building External Models (Collaborative Research: Damelin)

      This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. 

      Lead Organization(s): 
      Award Number: 
      1417809
      Funding Period: 
      Fri, 08/01/2014 to Tue, 07/31/2018
      Full Description: 

      The Concord Consortium and Michigan State University will collaborate to: (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. By iteratively designing, developing and testing a modeling tool and instructional materials that facilitate the building of dynamic models, the project will result in exemplary middle and high school materials that use a model-based approach as well as an understanding of the potential of this approach in supporting student development of explanatory frameworks and modeling capabilities. A key goal of the project is to increase students' learning of science through modeling and to study student engagement with modeling as a scientific practice. 

      The project provides the nation with middle and high school resources that support students in developing and using models to explain and predict phenomena, a central scientific and engineering practice. Because the research and development work will be carried out in schools in which students typically do not succeed in science, the products will also help produce a population of citizens capable of continuing further STEM learning and who can participate knowledgeably in public decision making. The goals of the project are to (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building, using, and revising models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. Using a design-based research methodology, the research and development efforts will involve multiple cycles of designing, developing, testing, and refining the systems modeling tool and the instructional materials to help students meet important learning goals related to constructing dynamic models that align with the Next Generation Science Standards. The learning research will study the effect of working with external models on student construction of robust explanatory conceptual understanding. Additionally, it will develop a set of professional development resources and teacher scaffolds to help the expanding community of teachers not directly involved in the project take advantage of the materials and strategies for maximizing the impact of the curricular materials.

      Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

      Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1418270
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

      The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

      Pages

      Subscribe to Achievement/Growth