Achievement/Growth

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hodapp)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Lead Organization(s): 
Award Number: 
1720810
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Designing a Middle Grades Spatial Skills Curriculum

This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.

Lead Organization(s): 
Award Number: 
1720801
Funding Period: 
Sat, 07/01/2017 to Tue, 06/30/2020
Full Description: 

The ability to make spatial judgements and visualize has been shown to be a strong indicator of students' future success in STEM-related courses. The project is innovative because it uses a widely available gaming environment, Minecraft, to examine spatial reasoning. Finding learning experiences which support students' spatial reasoning in an authentic and engaging way is a challenge in the field. This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform. The resources will incorporate hands-on learning and engage students in building virtual structures using spatial reasoning. The curriculum materials are being designed to be useful in other middle grades contexts.

The study is a design and development study that will design four training modules intended to improve spatial reasoning in the following areas: rotation, mental slicing, 2D to 3D transformation and perspective taking. The research questions are: (1) Does a Minecraft-based intervention that targets specific spatial reasoning tasks improve middle grade learners' spatial ability? (2) Does spatial skills growth differ by gender? The experimental design will compare the influence of the virtual spatial learning environment alone vs. the use of design challenges designed specifically for the spatial skills. The data collected will include assessments of spatial reasoning and feedback from teachers' who use the materials. The spatial skills measures will be administered as a pre-test, post-test, and six-month follow-up assessment to measure long term effects.


Project Videos

2020 STEM for All Video Showcase

Title: Building Spatial Skills with Minecraft

Presenter(s): Nick Lux, Barrett Frank, & Bryce Hughes


CAREER: Investigating Changes in Students' Prior Mathematical Reasoning: An Exploration of Backward Transfer Effects in School Algebra

This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions.

Lead Organization(s): 
Award Number: 
1651571
Funding Period: 
Sat, 07/01/2017 to Thu, 06/30/2022
Full Description: 

As students learn new mathematical concepts, teachers need to ensure that prior knowledge and prior ways understanding are not negatively affected. This award explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate students in four Algebra I classrooms as they learn quadratic functions. The PI will examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. More generally, this award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction. An advisory board of scholars with expertise in mathematics education, assessment, social interactions, quantitative reasoning and measurement will support the project. The research will occur in diverse classrooms and result in presentations at the annual conferences of national organizations, peer-reviewed publications, as well as a website for teachers which will explain both the theoretical model and the findings from the project. An undergraduate university course and professional development workshops using video data from the project are also being developed for pre-service and in-service teachers. Ultimately, the research findings will generate new knowledge and offer guidance to elementary school teachers as they prepare their students for algebra.

The research involves three phases. The first phase includes observations and recordings of four Algebra I classrooms and will test students' understanding of linear functions before and after the lessons on quadratic functions. This phase will also include interviews with students to better understand their reasoning about linear function problems. The class sessions will be coded for the kind of reasoning that they promote. The second phase of the project will involve four cycles of design research to create quadratic and linear function activities that can be used as instructional interventions. In conjunction with this phase, pre-service teachers will observe teaching sessions through a course that will be offered concurrently with the design research. The final phase of the project will involve pilot-applied research which will test the effects of the instructional activities on students' linear function reasoning in classroom settings. This phase will include treatment and control groups and further test the hypotheses and instructional products developed in the first two phases.

Readiness through Integrative Science and Engineering: Refining and Testing a Co-constructed Curriculum Approach with Head Start Partners

Building upon prior research on Head Start curriculum, this phase of Readiness through Integrative Science and Engineering (RISE) will be expanded to include classroom coaches and community experts to enable implementation and assessment of RISE in a larger sample of classrooms. The goal is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families, and the focus on science, technology, and engineering will address a gap in early STEM education.

Lead Organization(s): 
Award Number: 
1621161
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

Readiness through Integrative Science and Engineering (RISE) is a late stage design and development project that will build upon the results of an earlier NSF-funded design and development study in which a co-construction process for curriculum development was designed by a team of education researchers with a small group of Head Start educators and parent leaders. In this phase, the design team will be expanded to include Classroom Coaches and Community Experts to enable implementation and assessment of the RISE model in a larger sample of Head Start classrooms. In this current phase, an iterative design process will further develop the science, technology, and engineering curricular materials as well continue to refine supports for teachers to access families' funds of knowledge related to science, technology, and engineering in order to build on children's prior knowledge as home-school connections. The ultimate goal of the project is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families who tend to be underrepresented in curriculum development studies even though they are most at-risk for later school adjustment difficulties. The focus on science, technology, and engineering will address a gap in early STEM education.

The proposed group-randomized design, consisting of 90 teachers/classrooms (45 RISE/45 Control), will allow for assessment of the impact of a 2-year RISE intervention compared with a no-intervention control group. Year 1 will consist of recruitment, induction, and training of Classroom Coaches and Community Experts in the full RISE model, as well as preparation of integrative curricular materials and resources. In Year 2, participating teachers will implement the RISE curriculum approach supported by Classroom Coaches and Community Experts; data on teacher practice, classroom quality, and implementation fidelity will be collected, and these formative assessments will inform redesign and any refinements for Year 3. During Year 2, project-specific measures of learning for science, technology, and engineering concepts and skills will also be tested and refined. In Year 3, pre-post data on teachers (as in Year 2) as well as on 10 randomly selected children in each classroom (N = 900) will be collected. When child outcomes are assessed, multilevel modeling will be used to account for nesting of children in classrooms. In addition, several moderators will be examined in final summative analyses (e.g., teacher education, part or full-day classroom, parent demographics, implementation fidelity). At the end of this project, all materials will be finalized and the RISE co-construction approach will be ready for scale-up and replication studies in other communities.

INFEWS/T4: The INFEWS-ER: a Virtual Resource Center Enabling Graduate Innovations at the Nexus of Food, Energy, and Water Systems

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience. The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students through a virtual resource center to help develop systematic processes for interdisciplinary thinking about large societal problems, especially those at the nexus of food, energy, and water.

Award Number: 
1639340
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience, thereby facilitating the generation of human capital who can address grand challenges at the nexus of food, energy, and water. The INFEWS-ER will provide educational resources (ER) targeting innovations at the nexus of FEW by combining the fundamental sciences of food, energy, and water with the skills and knowledge of interdisciplinary problem solving and the latest computational modeling and analysis tools and data. These individuals will be capable of analyzing scenarios at the scale of nations, continents, and the globe. The INFEWS-ER will offer certificate programs where FEW Graduate Scholars can demonstrate their capabilities in interdisciplinary thinking, Big Data, and computational modeling and analysis, thereby receiving a credential demonstrating their level of achievement. Further, The INFEWS-ER will offer a faculty fellowship program to incentivize a network of academics that will provide a scaffolded learning environment for graduates, effectively creating a hub for INFEWS research, education, and training.

The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students (who will become future faculty, practitioners, and policy makers) through a virtual resource center that will be accessible beyond the project team and project timeframe. Students will develop systematic processes for interdisciplinary thinking. They will be in the best possible position to target large societal problems, especially those at the nexus of food, energy, and water. New, interdisciplinary solutions will emerge, solutions that are sensitive to a wider array of constraints and ideals. Those solutions will reflect the best possible integration of technological, socio-economic, and socio-political constructs. Project impacts include educational and workforce development of the next generation of academics, multi-institution collaboration, and enhanced infrastructure for transdisciplinary research and education. The INFEWS-ER also has the potential to influence the way interdisciplinary research and education is implemented in the future through the archival dissemination of not only learning modules, but also the evaluations and lessons learned from the implementation of the center.

Development of the Electronic Test of Early Numeracy

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish that will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures.

Partner Organization(s): 
Award Number: 
1621470
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish, focused on number and operations. The assessment will incorporate a learning trajectory that describes students' development of the understanding of number. The electronic assessment will allow for the test to adapt to students' responses and incorporate games to increase children's engagement with the tasks. These features take advantage of the electronic format. The achievement test will be designed to be efficient, user-friendly, affordable, and accessible for a variety of learning environments and a broad age range (3 to 8 years old). The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures. This project is funded by the Discovery Research Pre-K-12 Program, which funds research and development of STEM innovations and approaches in assessment, teaching and learning.

The e-TEN will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The items will be designed using domain-based learning trajectories that describe students' development of understanding of the topics. The test will be designed with some key characteristics. First, it will be semi-adaptive over six-month age spans. Second, it will have an electronic format that allows for uniform implementation and an efficient, user-friendly administration. The test will also be accessible to Spanish speakers using an inclusive assessment model. Finally, the game-based aspect should increase children's engagement and present more meaningful questions. The user-friendly aspect includes simplifying the assessment process compared to other tests of numeracy in early-childhood. The first phase of the development will test a preliminary version of the e-TEN to test its functionality and feasibility. The second phase will focus on norming of the items, reliability and validity. Reliability will be assessed using Item Response Theory methods and test-retest reliability measures. Validity will be examined using criterion-prediction validity and construct validity. The final phase of the work will include creating a Spanish version of the test including collecting data from bilingual children using both versions of the e-TEN.

Longitudinal Learning of Viable Argument in Mathematics for Adolescents

This project builds on a prior study that demonstrated increases in students' knowledge of argumentation and their performance on mathematics assessments. The project will extend the use of the argumentation intervention into all eighth grade content areas, with a specific focus on students' learning of reasoning and proof, and contribute to understanding how students' learning about mathematical practices that can help them learn mathematics better.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621438
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The project will examine learning in eighth grade mathematics with a specific focus on students' learning of reasoning and proof. The intervention builds on a prior study in algebra that demonstrated increases in students' knowledge of argumentation and their performance on mathematics assessments. This project will extend the use of the argumentation intervention into all eighth grade content areas. The investigators will also address support for teachers in the form of teacher materials that link the argumentation content with mathematics standards and state-wide assessments, and a learning progression to engage students in proving tasks. The project will use assessments of mathematics learning and additional data from teachers and students to understand the impact of the argumentation intervention on teachers and students. The project contributes to understanding how students can learn about mathematical practices, such as proving, that can help them learn mathematics better. A significant contribution will be the definition of aspects of proving and descriptions of student outcomes that can be used to measure how well students have achieved these components of proving. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project is also supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.

The project suggests twelve conceptual pillars that are combined with classroom processes and assessable outcomes to examine the use of argumentation practices in the teaching of eighth grade mathematics content. The investigation of classroom support for argumentation includes research questions that focus on improvement on state-level assessments, students' ability to construct mathematical arguments, and the conceptual progression that supports students' understanding of argumentation and proof. In addition, the study will examine teachers' role in argumentation in the classroom and their perception of potential challenges for classroom implementation. The study will use an experimental design to examine an intervention for mathematical reasoning and proof in eighth grade. The project includes a treatment group of teachers that will participate in professional development including a summer institute followed by instructional coaching over a two year period.

Algebra Project Mathematics Content and Pedagogy Initiative

This project will scale up, implement, and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework, which seeks to improve performance and participation in mathematics of students in distressed school districts, particularly low-income students from underserved populations.

Award Number: 
1621416
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

Algebra continues to serve as a gatekeeper and potential barrier for high school students. The Algebra Project Mathematics Content and Pedagogy Initiative (APMCPI) will scale up, implement and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework. The APMCPI project team is comprised of four HBCUs (Virginia State University, Dillard University, Xavier University, Lincoln University), the Southern Initiative Algebra Project (SIAP), and four school districts that are closely aligned with partner universities. The purpose of the Algebra Project is to improve performance and participation in mathematics by members of students in distressed school districts, particularly those with a large population of low-income students from underserved populations including African American and Hispanics. The project will provide professional development and implement the Algebra Project in four districts and study the impact on student learning. The research results will inform the nation's learning how to improve mathematics achievement for all children, particularly those in distressed inner-city school districts.

The study builds on a prior pilot project with a 74% increase in students who passed the state exam. In the early stages of this project, teachers in four districts closely associated with the four universities will receive Algebra Project professional development in Summer Teacher Institutes with ongoing support during the academic year, including a community development plan. The professional development is designed to help teachers combine mathematical problem solving with context-rich lessons, which both strengthen and integrate teachers' understanding of key concepts in mathematics so that they better engage their students. The project also will focus on helping teachers establish a framework for mathematically substantive, conceptually-rich and experientially-grounded conversations with students. The first year of the study will begin a longitudinal quasi-experimental, explanatory, mixed-method design. Over the course of the project, researchers will follow cohorts who are in grade-levels 5 through 12 in Year 1 to allow analyses across crucial transition periods - grades 5 to 6; grades 8 to 9; and grades 12 to college/workforce. Student and teacher data will be collected in September of Project Year 1, and in May of each project year, providing five data points for each student and teacher participant. Student data will include student attitude, belief, anxiety, and relationship to mathematics and science, in addition to student learning outcome measures. Teacher data will include content knowledge, attitudes and beliefs, and practices. Qualitative data will provide information on the implementation in both the experimental and control conditions. Analysis will include hierarchical linear modeling and multivariate analysis of covariance.

InquirySpace 2: Broadening Access to Integrated Science Practices

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics. InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research and learn what it means to be a scientist.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621301
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics courses. The project addresses the urgent national priority to improve science education as envisioned in the Next Generation Science Standards (NGSS) by focusing less on learning facts and equations and instead providing students with the time, skills, and resources to experience the conduct of science and what it means to be a scientist. This project builds on prior work that created a sequence of physics activities that significantly improved students' abilities to undertake data-based experiments and led to productive independent investigations. The goal of the InquirySpace project is to improve this physics sequence, extend the approach to biology and chemistry, and adapt the materials to the needs of diverse students by integrating tailored formative feedback in real time. The result will be student and teacher materials that any school can use to allow students to experience the excitement and essence of scientific investigations as an integral part of science instruction. The project plans to create and iteratively revise learning materials and technologies, and will be tested in 48 diverse classroom settings. The educational impact of the project's approach will be compared with that of business-as-usual approaches used by teachers to investigate to what extent it empowers students to undertake self-directed experiments. To facilitate the widest possible use of the project, a complete set of materials, software, teacher professional development resources, and curriculum design documents will be available online at the project website, an online teacher professional development course, and teacher community sites. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research. These features will include (1) educational games to teach data analysis and interpretation skills needed in the approach, (2) reduced dependence on reading and writing through the use of screencast instructions and reports, (3) increased reliance on graphical analysis that can make equations unnecessary, and (4) extensive use of formative feedback generated from student logs. The project uses an overarching framework called Parameter Space Reasoning (PSR) to scaffold students through a type of experimentation applicable to a very large class of experiments. PSR involves an integrated set of science practices related to a question that can be answered with a series of data collection runs for different values of independent variables. Data can be collected from sensors attached to the computer, analysis of videos, scientific databases, or computational models. A variety of visual analytic tools will be provided to reveal patterns in the graphs. Research will be conducted in three phases: design and development of technology-enhanced learning materials through design-based research, estimation of educational impact using a quasi-experimental design, and feasibility testing across diverse classroom settings. The project will use two analytical algorithms to diagnose students' learning of data analysis and interpretation practices so that teachers and students can modify their actions based on formative feedback in real time. These algorithms use computationally optimized calculations to model the growth of student thinking and investigation patterns and provide actionable information to teachers and students almost instantly. Because formative feedback can improve instruction in any field, this is a major development that has wide potential.

Building a Next Generation Diagnostic Assessment and Reporting System within a Learning Trajectory-Based Mathematics Learning Map for Grades 6-8

This project will build on prior funding to design a next generation diagnostic assessment using learning progressions and other learning sciences research to support middle grades mathematics teaching and learning. The project will contribute to the nationally supported move to create, use, and apply research based open educational resources at scale.

Award Number: 
1621254
Funding Period: 
Thu, 09/15/2016 to Sat, 08/31/2019
Full Description: 

This project seeks to design a next generation diagnostic assessment using learning progressions and other research (in the learning sciences) to support middle grades mathematics teaching and learning. It will focus on nine large content ideas, and associated Common Core State Standards for Mathematics. The PIs will track students over time, and work within school districts to ensure feasibility and use of the assessment system.

The research will build on prior funding by multiple funding agencies and address four major goals. The partnership seeks to address these goals: 1) revising and strengthening the diagnostic assessments in mathematics by adding new item types and dynamic tools for data gathering 2) studying alternative ways to use measurement models to assess student mathematical progress over time using the concept of learning trajectories, 3) investigating how to assist students and teachers to effectively interpret reports on math progress, both at the individual and the class level, and 4) engineering and studying instructional strategies based on student results and interpretations, as they are implemented within competency-based and personalized learning classrooms. The learning map, assessment system, and analytics are open source and can be used by other research and implementation teams. The project will exhibit broad impact due to the number of states, school districts and varied kinds of schools seeking this kind of resource as a means to improve instruction. Finally, the research project contributes to the nationally supported move to create, use, and apply research based open educational resources at scale.

Pages

Subscribe to Achievement/Growth