Achievement/Growth

Networking Urban Resources with Teachers and University to Enrich Early Childhood Science (NURTURES) Phase II: Expansion and Evaluation

Building on successful prior work, this project simultaneously targets young children's teachers and families/caregivers in an effort to build both parties' capacity to promote student interest in science, technology, engineering and mathematics (STEM) learning.

Lead Organization(s): 
Award Number: 
1721059
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

Building on successful prior work, this University of Toledo project, Networking Urban Resources with Teachers and University to enRich Early Childhood Science (NURTURES): Researching the impact of teacher professional development and family engagement on PreK-3 achievement, simultaneously targets young children's teachers and families/caregivers in an effort to build both parties' capacity to promote student interest in science, technology, engineering and mathematics (STEM) learning. Teachers participate in a two-week summer professional development program and receive support across the school year in the form of individualized coaching and participation in professional learning communities. Families receive science inquiry packets (sent home from school) four times a year and attend community STEM events throughout the year. Inquiry packets and community events encourage science inquiry, discourse, and further exploration of key science ideas. Project participants will include 120 teachers, 2,400 PreK-3 children and over 7,200 family members in Ohio and Michigan.

Extending the initial NURTURES project, developed with NSF Math and Science Partnership funding, this follow-up project aims to: 1) Transform early childhood science teaching based upon Next Generation Science Standards (NGSS) to measurably increase student science, literacy, and math achievement, and 2) Engage families of PreK-3 students in science inquiry practices to measurably improve student science, literacy, and math achievement. A particularly important facet of this follow-up project is the research effort to parse and understand how each component (teacher professional development versus family engagement) impacts student learning. The project will use a randomized control group research design (RCT) to compare student achievement outcomes among three groups: Children whose teachers received professional development and family engagement activities, children whose teachers received only professional development, and a control group. The project will use standardized tests (the TerraNova Complete Battery) to measure impact on learning gains in science, mathematics, reading, and early literacy for children in grades K- 3. The Lens on Science assessment will measure science learning in preschool children. This project will result in an NGSS-based program for teachers and families that has been systematically tested and may ultimately be scaled up to an impact study and dissemination at a broad level.

A Partnership to Adapt, Implement and Study a Professional Learning Model and Build District Capacity to Improve Science Instruction and Student Understanding (Collaborative Research: Borko)

This project will work in partnership with the Santa Clara Unified School District (SCUSD) to adapt a previously designed Professional Learning (PL) model based on the District's objectives and constraints to build the capacity of teacher leaders and a program coordinator to implement the adapted PL program. The project is examining the sustainability and scalability of a PL model that supports the development of teachers' pedagogical content knowledge and instructional practices.

Lead Organization(s): 
Award Number: 
1720930
Funding Period: 
Sun, 10/01/2017 to Thu, 09/30/2021
Full Description: 

The Lawrence Hall of Science (the Hall) and Stanford University teams have previously developed and tested the efficacy of a program of Professional Learning (PL) which is focused on improving teachers' ability to support students' ability to engage in scientific argumentation. Key components of the PL model include a week-long summer institute and follow-up sessions during the academic year that incorporate additional pedagogical input, video reflection, and planning time. In this project, the Hall and Stanford are working in partnership with the Santa Clara Unified School District (SCUSD) to adapt the PL model based on the District's objectives and constraints, to build the capacity of teacher leaders and a program coordinator to implement the adapted PL program. This will enable the District to continue to adapt and implement the program independently at the conclusion of the project. Concurrently, the project is studying the adaptability of the PL model and the effectiveness of its implementation, and is developing guidelines and tools for other districts to use in adapting and implementing the PL model in their local contexts. Thus, this project is contributing knowledge about how to build capacity in districts to lead professional learning in science that addresses the new teaching and learning standards and is responsive to the needs of their local context.

The project is examining the sustainability and scalability of a PL model that supports the development of teachers' pedagogical content knowledge and instructional practices, with a particular focus on engaging students in argument from evidence. Results from the Hall and Stanford's previous research project indicate that the PL model is effective at significantly improving teachers' and students' classroom discourse practices. These findings suggest that a version of the model, adapted to the context and needs of a different school district, has the potential to improve the teaching of science to meet the demands of the current vision of science education. Using a Design-Based Implementation Research approach, this project is (i) working with SCUSD to adapt the PL model; (ii) preparing a district project coordinator and cadre of local teacher leaders (TLs) to implement and further adapt the model; and (iii) studying the adaptation and implementation of the model. The outcomes will be: a) a scalable PL model that can be continually adapted to the objectives and constraints of a district; b) a set of activities and resources for the district to prepare and support the science teacher leaders who will implement the adapted PL program internally with other teachers; and c) knowledge about the adaptations and resources needed for the PL model to be implemented independently by other school districts. The team also is researching the impact of the program on classroom practices and student learning.


Project Videos

2020 STEM for All Video Showcase

Title: Accomplishments and Struggles in a 3-Way RPP

Presenter(s): Emily Weiss, Hilda Borko, Coralie Delhaye, Jonathan Osborne, Emily Reigh, Tricia Ringel, Craig Strang, & Krista Woodward

2019 STEM for All Video Showcase

Title: Building District Leadership in Scientific Argumentation

Presenter(s): Coralie Delhaye, Emily Reigh, & Emily Weiss

2018 STEM for All Video Showcase


Integrating Chemistry and Earth Science

This project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards.

Award Number: 
1721163
Funding Period: 
Tue, 08/15/2017 to Wed, 07/31/2019
Full Description: 

This Integrating Chemistry and Earth science (ICE) project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards. The overarching goal of the project is to develop teacher capacity to teach and evaluate student abilities to use the practices of scientists and concepts from Earth science and chemistry to understand important phenomena in their immediate, familiar environments. The project has the potential to serve as a model for how to make cutting edge science directly accessible to all students. The project is a collaborative effort that engages scientists, science education researchers, curriculum developers, school curriculum and instruction leaders, and science teachers in the longer term challenge of infusing Earth science concepts and practices across the core high school science courses.

Current guidelines and standards for science education promote learning that engages students in three interrelated dimensions: disciplinary core ideas, scientific practices, and crosscutting ideas. This project is guided by the hypothesis that when provided sustained opportunities to engage in three-dimensional learning experiences, in an integrated Earth science and chemistry context, students will improve in their ability to demonstrate the coordination of disciplinary core ideas, scientific practices, and crosscutting concepts when solving problems and developing explanations related to scientific phenomena. This project will employ a design based research approach, and during the two development-enactment-analysis-and-redesign cycles, the project team will collect student assessment data, teacher interview data, observational data from lessons, teacher surveys, and reflective teacher logbooks. These collected data will provide information about how teachers implement the lessons, what students do during the lessons, and what students learn from them that will lead to better design and a better understanding of student learning. This information will be used to inform the modification of lessons from cycle to cycle, and to inform the professional development materials for teachers. The research agenda for the project is guided by the following questions: 1. What are the design features of ICE lessons that support teachers in enacting three-dimensional instruction within the context of their classroom? 2. What are the design features of embedded three-dimensional assessments that yield useful classroom data for teachers and researchers regarding their students' abilities to integrate core ideas, scientific practices, and crosscutting concepts? 3. What is the nature of student learning related to disciplinary core ideas, scientific practices, and crosscutting concepts that results from students' engagement in ICE lesson sets? 4. What differences emerge in student engagement and learning outcomes for ICE lessons that incorporate local phenomena or data sets as compared to lessons that do not? 5. What contextual factors (i.e., school context, administrative support, time constraints, etc.) influence teachers' implementation of three-dimensional instruction embedded within ICE lessons?


Project Videos

2019 STEM for All Video Showcase

Title: Integrating Chemistry and Earth Science (ICE)

Presenter(s): Alan Berkowitz, Vonceil Anderson, Bess Caplan, Kevin Garner, & Jonathon Grooms


Integration of Engineering Design and Life Science: Investigating the Influence of an Intervention on Student Interest and Motivation in STEM Fields

This project will investigate the integration of engineering design, practices, and thinking into middle school life science curriculum while providing opportunities for students to foster knowledge of and increase interest in life and biosciences. The project will specifically respond to the need to create, implement, and evaluate a model intervention that will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields.

Lead Organization(s): 
Award Number: 
1721141
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

This project will investigate the integration of engineering design, practices, and thinking into middle school life science curriculum while providing opportunities for students to foster knowledge of and increase interest in life and biosciences. The project will specifically respond to the need to create, implement, and evaluate a model intervention that will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields. Specifically, the project will partner with middle school science teachers from two local school corporations, STEM university faculty members and undergraduate engineering students, and university-based outreach coordinators from a minorities engineering program, the office of future engineers, and women in engineering program. Through this combined effort, both school corporations that serve underserved, culturally diverse, and socioeconomically disadvantaged students in rural communities; will have broad-based support for engaging 36 teachers and 3000 students in integrated life science with engineering design.

The project will employ a mixed methods research design incorporating both qualitative and quantitative approaches for data collection and analyses. The research team will conduct quantitative analyses by using Hierarchical Linear Modeling to determine the extent to which integrating life science with engineering design and thinking impact student learning of life science concepts and interest in life and biosciences. Qualitative approaches, including discourse analysis, will be used to delve deeper into student learning of the targeted life science concepts. Through this research, the project will advance evidence-based understanding of learning, enhance the theoretical models of student life science learning, and merge and extend the successes of previous studies by using the faculty expertise in effective approaches in engineering integration in K-12 science classrooms. Specifically, concept assessments, interest surveys, recordings of classroom discourse, student artifacts (e.g., design reports), interviews, and classroom observations will be used as data sources. Outcomes from the project will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields. The life STEM focused design tasks will be disseminated through an online peer-reviewed digital library available for use across the U.S. and beyond. Along with the design-based tasks on this website; results from the intervention model will be disseminated through electronic and print media to inform researchers, educators, administrators, and policy makers who play critical roles in enhancing student learning of and interest in STEM, about pathways to broadening participation in STEM.

Science and Engineering Education for Infrastructure Transformation

This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1721054
Funding Period: 
Sun, 10/01/2017 to Thu, 09/30/2021
Full Description: 

The Concord Consortium in collaboration with Purdue University will research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. This project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration. The project will deliver two innovations: 1) The Smart High School is an engineering platform for designing Internet of Things systems for managing the resources, space, and processes of a school based on real-time analysis of data collected by various sensors deployed by students on campus; and 2) the Virtual Solar World is a computational modeling platform for students to design, deploy, and connect virtual solar power solutions for their homes, schools, and regions. Six standards-aligned curriculum units based on these technologies will be developed to guide student learning and support educational research. Approximately 2,000 students from rural, suburban, and urban high schools in Indiana, Massachusetts, New Hampshire, and Ohio will participate in this research. project products and findings through the Internet, conferences, publications, and partner networks.

The research is designed to identify technology-enhanced instructional strategies that can simultaneously foster the growth of skills and self-efficacy in scientific reasoning, design thinking, and computational thinking, all of which are needed to build the future infrastructure. The focus on infrastructure transformation is aligned with NSF's vision of smart and connected communities. Although this project will use the context of smart and green infrastructure to engage students to solve real-world problems, the skills of scientific reasoning, design thinking, and computational thinking that they will acquire through meeting the challenges of this project can be transferrable to other topics and fields. Using a design-based research approach, a rich set of formative and summative data will be collected from these students for probing into three research questions: 1) To what extent does the integrated learning model help students develop and connect scientific reasoning, design thinking, and computational thinking skills?; 2) To what extent is students' interest in cognate careers affected by the authenticity of engineering design challenges?; and 3) How do the variations in the solutions to overcome the cognitive and practical difficulties of real-world problems impact learning outcomes and career interest? The data sources include pre/post-tests, process data, self-reports, observations, surveys, interviews, and participant information.

Examining Relationships Between Flipped Instruction and Students' Learning of Mathematics

This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics, which is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning.

Lead Organization(s): 
Award Number: 
1721025
Funding Period: 
Tue, 08/01/2017 to Fri, 07/31/2020
Full Description: 

Instead of presenting new material in class and then assigning problems to be completed outside of class, flipped instruction involves students watching videos or reading new material outside of class and then completing their "homework" in class. Teachers' implementation of flipped instruction has increased dramatically in recent years, with more than two-thirds of teachers now reporting flipping a lesson, if not an entire course. Although popular media and philanthropic organizations have given a great deal of attention and financial support to flipped instruction, little is known about how teachers implement it and what benefits and drawbacks flipped instruction has in contrast with non-flipped instruction. This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics. This design and development is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning. These findings can inform teacher educators in better aligning their instruction to instructional formats that correlate with increased student learning outcomes.

Using mixed-methods techniques, the study will look at the nature of the activities and interactions occurring in mathematics classrooms and assess their quality so that the researchers may distinguish high-quality from low-quality univocal discourse, high-quality from low-quality dialogic discourse, and high cognitive demand from low cognitive demand tasks. Working in 40 algebra classrooms -- 20 implementing some form of flipped instruction and 20 serving as a non-flipped basis for comparison -- the project will address the following research questions using a correlational design and multilevel modeling techniques: RQ1. What are salient factors entailed in flipped instruction in secondary algebra? RQ2. What associations, if any, exist among factors entailed in teachers' implementation of flipped algebra instruction and students' learning of algebra as measured on a state-mandated end-of-course assessment and on a concept-of-variable inventory?

Research on the Utility of Abstraction as a Guiding Principle for Learning about the Nature of Models in Science Education

This project will develop a short instructional sequence and new student learning assessments that are implemented in earth science classes. The findings will help the field to understand whether the process of abstracting from multiple phenomena during model construction supports students' understanding of scientific models in relation to earth science ideas and the cross-cutting concept of scale.

Partner Organization(s): 
Award Number: 
1720996
Funding Period: 
Mon, 05/15/2017 to Thu, 04/30/2020
Full Description: 

Contemporary science education reforms consider modeling as a means to understanding science ideas and as an essential scientific practice to be learned. Modeling is the practice of developing and refining representations (or "models") as analogs of scientific phenomena. Important to the practice of modeling is the idea that, as an analog, a model draws out (or "abstracts") some as opposed to all aspects of a phenomenon. However, a well-known problem in modeling instruction is that leaners have difficulty understanding this essential point. Learners often think of models as literal interpretations, or replicas, of what they represent. The investigators hypothesize that engaging students in a process of abstraction -- that is, drawing out common structures from multiple scientific phenomena -- during the creation (or "synthesis") of their own model will help students better understand the nature of scientific models. Importantly, this approach will help students discover that a scientific model is not simply a literal interpretation, or replica, of any single phenomenon. Sixteen teachers and their estimated 960 students from economically challenged communities in Georgia and Maine will participate in and benefit from the research study in the context of high school earth and environmental science classes. The project will develop a short instructional sequence and new student learning assessments that are implemented in earth science classes. The findings will help the field to understand whether the process of abstracting from multiple phenomena during model construction supports students' understanding of scientific models in relation to earth science ideas and the cross-cutting concept of scale. The project will provide professional development workshops to up to forty-six teachers over three years as means of recruiting research participants and to cultivate teacher leadership around the new approach to modeling. The developed products and the research findings will be shared with researchers, teacher educators, and teachers through science education journals and conferences.

This Exploratory Learning Strand research study builds upon prior work of investigators at University of Georgia and University of Maine by rigorously testing their hypothesis that that engaging students in the process of abstracting from multiple source phenomena during model synthesis supports more scientifically accurate understandings of the nature of models. The research has the potential to (1) generate new knowledge about the potential value of abstraction as a guiding principle of learning about models and modeling practice; (2) identify ways in which specific classroom conditions, including teacher talk and actions, enable or hinder student learning about abstraction in models and modeling practice; and (3) demonstrate how teachers translate the modeling approach to other science disciplines they teach. Teachers will be recruited through existing partnerships with schools and through professional development workshops offered to teachers nearby the two universities. To address the first two goals, the investigators will develop and test a two-part instructional sequence that addresses core ideas in earth science and the cross-cutting concept of scale. The first component of the instructional sequence is a typical model-based inquiry, and the second component requires that students abstract structures from multiple phenomena during the synthesis of their own models. Twelve teachers and their students will be randomly assigned to either the treatment or the control group. The treatment group will experience the two-part instructional sequence. The control group will initially not experience the second component, but will have an opportunity to do so at the conclusion of the study. Quantitative and qualitative analysis of classroom observations, interviews with teachers, student knowledge tests, student work, and teacher logs will be used to determine the effectiveness of abstracting during model synthesis and classroom conditions that enable or hinder students' learning when the approach is used. To address the third goal, investigators will document the experience of four teachers as they develop and implement a similar instructional sequence in other science disciplines, providing preliminary evidence on the broader utility of the synthesis-through-abstraction approach to modeling. A new research assessment for measuring students' understanding of the nature of models, core ideas of earth science, and the cross-cutting concept of scale may be broadly useful for future research on learning at the intersection of the three knowledge dimensions. Findings will be shared by traditional means, such as papers in peer-reviewed research and practitioner journals and conference presentations. Investigators will conduct professional development workshops for teachers in the third year to disseminate the products and findings of the research to practitioner audiences and to further cultivate participating teachers' leadership around this novel approach to modeling practice in science education.

Promoting Scientific Explorers Among Students with Learning Disabilities: The Design and Testing of a Grade 2 Science Program Focused on Earth's Systems

The purpose of this project is to design and empirically evaluate a second grade science program, Scientific Explorers, aimed at promoting an early foundation for learning science among all students, including students at risk for or with learning disabilities in reading and mathematics.

Lead Organization(s): 
Award Number: 
1720958
Funding Period: 
Thu, 06/01/2017 to Mon, 05/31/2021
Full Description: 

A robust understanding of core science concepts and practices is necessary for obtaining jobs in STEM (science, technology, engineering, and math) fields. Despite these occupational and practical affordances, few effective instructional tools exist for the elementary science classroom. Moreover, early elementary school teachers have limited materials at their disposal to promote a rich knowledge of science among the full range of learners. The purpose of this project is to address this need by designing and empirically evaluating a second grade science program, Scientific Explorers, aimed at promoting an early foundation for learning science among all students, including students at risk for or with learning disabilities in reading and mathematics. Scientific Explorers will be designed to improve students' knowledge and understanding of core science concepts. Recognizing the important role of early literacy and mathematics in science learning and teaching, this project will integrate core disciplinary ideas with critical mathematics and literacy standards. To support students as they engage in scientific tasks associated with Earth's Systems, this project will engineer the Scientific Explorers program around a guided inquiry framework. Another aim of this project is to develop and empirically validate a science assessment that measures students' knowledge and application of core science concepts and practices related to Earth's Systems.

Employing a mixed-method approach, this project will investigate the feasibility and efficacy of the Scientific Explorers program. Additional research activities will include establishing the reliability and validity of a second grade science assessment. Approximately 40 second grade classrooms from two different geographical regions will participate in the project. Using multilevel modeling and item response theory techniques, this project will address five primary research questions: (1) To what extent can teachers feasibly implement the Scientific Explorers program in authentic education settings? (2) What is the impact of Scientific Explorers on the science achievement of students in participating classrooms? (3) Do early literacy skills at the beginning of second grade predict differential response to the Scientific Explorers program? (4) Does responsiveness to the Scientific Explorers program differ as a function of reading disability, mathematics disability, or a learning disability in reading and mathematics (comorbid LD)?, and (5) To what extent does the early science achievement measure demonstrate technical adequacy (reliability and validity)?

Culturally Responsive Indigenous Science: Connecting Land, Language, and Culture

This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns.

Lead Organization(s): 
Award Number: 
1720931
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

The intersection between Indigenous and Western science continues to be of great importance to K-12 science education, particularly with regards to broadening participation in STEM. With over five hundred federally recognized Native American tribes in the United States, there is much to learn and understand. This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns. While Indigenous STEM teaching and learning as constructs have existed for many years, the rigorous research design and extensive integration of multimodal technologies as platforms for scientific inquiry, data management, knowledge dissemination and curation are innovative and timely. Few, if any, Design and Development projects in the current DRK-12 portfolio explore similar work. Therefore, the broader impacts of this project are poised to not only contribute to the DRK-12 portfolio but also advance knowledge in Indigenous STEM education and science education, more broadly.

Over a three year period, hundreds of Native American students (grades 4-9) in tribal schools located in Oregon, Washington, and Idaho will engage in the project. Each year, approximately 60-80 students (grades 7-9), with some returning students, will also participate in enrichment activities and in years 1-3, in the residential summer experience at Washington State University. A qualitative, quasi-experimental design-based study will be conducted to address three salient research questions: (a) What are the impacts of culturally responsive and land education-based ISTEM curriculum and technology on Native American student engagement, efficacy and achievement in school? (b) What types of professional development activities foster teacher efficacy and improve teacher learning and teaching of ISTEM in classrooms? and (c) How can ISTEM foster greater family and community engagement in schools and in Tribal Communities? Data will be collected through interviews, surveys, and or questionnaires from participating students, teachers, and Tribal members. Consistent with Indigenous methodologies, focus group interviews (talking circles) will also be facilitated after ISTEM community expositions and engagement activities to capture community impacts. Formative and summative evaluations will be conducted by the Learning and Performance Research Center (LPRC) at Washington State University, an independent entity of the University with extensive expertise in project evaluation. A broad range of dissemination activities will be employed to achieve maximum impacts, including the use of the Plateau People's Web Portal, a digital tool designed to help Native communities to manage, circulate, and curate their digital materials using their own cultural protocols, language and social systems. This regional collaboration includes partnerships with the Confederated Tribes of Warm Springs (Oregon), Confederated Tribes of the Colville Reservation (Washington), and the Coeur D'Alene Tribe (Idaho).


Project Videos

2020 STEM for All Video Showcase

Title: Culturally Responsive Indigenous Science

Presenter(s): Paula Price, Carladean Caldera, Landon Charlo, Kellie Fry, Zoe Higheagle Strong, Sandra Larios, James Lasarte-Whistocken, Lotus Norton-Wisla, & T Watson


Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hazari)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Award Number: 
1721021
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Pages

Subscribe to Achievement/Growth